Abstract:With the widespread deployment of fifth-generation (5G) wireless networks, research on sixth-generation (6G) technology is gaining momentum. Artificial Intelligence (AI) is anticipated to play a significant role in 6G, particularly through integration with the physical layer for tasks such as channel estimation. Considering resource limitations in real systems, the AI algorithm should be designed to have the ability to balance the accuracy and resource consumption according to the scenarios dynamically. However, conventional explicit multilayer-stacked Deep Learning (DL) models struggle to adapt due to their heavy reliance on the structure of deep neural networks. This article proposes an adaptive Implicit-layer DL Channel Estimation Network (ICENet) with a lightweight framework for vehicle-to-everything communications. This novel approach balances computational complexity and channel estimation accuracy by dynamically adjusting computational resources based on input data conditions, such as channel quality. Unlike explicit multilayer-stacked DL-based channel estimation models, ICENet offers a flexible framework, where specific requirements can be achieved by adaptively changing the number of iterations of the iterative layer. Meanwhile, ICENet requires less memory while maintaining high performance. The article concludes by highlighting open research challenges and promising future research directions.