Abstract:With the advancement of energy Internet and energy system integration, the increasing adoption of distributed photovoltaic (PV) systems presents new challenges on smart monitoring and measurement for utility companies, particularly in separating PV generation from net electricity load. Existing methods struggle with feature extraction from net load and capturing the relevance between weather factors. This paper proposes a PV disaggregation method that integrates Hierarchical Interpolation (HI) and multi-head self-attention mechanisms. By using HI to extract net load features and multi-head self-attention to capture the complex dependencies between weather factors, the method achieves precise PV generation predictions. Simulation experiments demonstrate the effectiveness of the proposed method in real-world data, supporting improved monitoring and management of distributed energy systems.
Abstract:With the proliferation of smart grids, smart cities face growing challenges due to cyber-attacks and sophisticated electricity theft behaviors, particularly in residential photovoltaic (PV) generation systems. Traditional Electricity Theft Detection (ETD) methods often struggle to capture complex temporal dependencies and integrating multi-source data, limiting their effectiveness. In this work, we propose an efficient ETD method that accurately identifies fraudulent behaviors in residential PV generation, thus ensuring the supply-demand balance in smart cities. Our hybrid deep learning model, combining multi-scale Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Transformer, excels in capturing both short-term and long-term temporal dependencies. Additionally, we introduce a data embedding technique that seamlessly integrates time-series data with discrete temperature variables, enhancing detection robustness. Extensive simulation experiments using real-world data validate the effectiveness of our approach, demonstrating significant improvements in the accuracy of detecting sophisticated energy theft activities, thereby contributing to the stability and fairness of energy systems in smart cities.
Abstract:To deal with heterogeneity resulting from label distribution skew and data scarcity in distributed machine learning scenarios, this paper proposes a novel Personalized Federated Learning (PFL) algorithm, named Federated Contrastive Representation Learning (FedCRL). FedCRL introduces contrastive representation learning (CRL) on shared representations to facilitate knowledge acquisition of clients. Specifically, both local model parameters and averaged values of local representations are considered as shareable information to the server, both of which are then aggregated globally. CRL is applied between local representations and global representations to regularize personalized training by drawing similar representations closer and separating dissimilar ones, thereby enhancing local models with external knowledge and avoiding being harmed by label distribution skew. Additionally, FedCRL adopts local aggregation between each local model and the global model to tackle data scarcity. A loss-wise weighting mechanism is introduced to guide the local aggregation using each local model's contrastive loss to coordinate the global model involvement in each client, thus helping clients with scarce data. Our simulations demonstrate FedCRL's effectiveness in mitigating label heterogeneity by achieving accuracy improvements over existing methods on datasets with varying degrees of label heterogeneity.