Abstract:Existing self-evolution methods overlook the influence of fine-grained reasoning steps, which leads to the reasoner-verifier gap. The computational inefficiency of Monte Carlo (MC) process supervision further exacerbates the difficulty in mitigating the gap. Motivated by the Error-Related Negativity (ERN), which the reasoner can localize error following incorrect decisions, guiding rapid adjustments, we propose a Self-Adaptive Process Optimization (SAPO) method for self-improvement in Small Language Models (SLMs). SAPO adaptively and efficiently introduces process supervision signals by actively minimizing the reasoner-verifier gap rather than relying on inefficient MC estimations. Extensive experiments demonstrate that the proposed method outperforms most existing self-evolution methods on two challenging task types: mathematics and code. Additionally, to further investigate SAPO's impact on verifier performance, this work introduces two new benchmarks for process reward models in both mathematical and coding tasks.




Abstract:Chain of thought (CoT) has proven useful for problems requiring complex reasoning. Many of these problems are both textual and multimodal. Given the inputs in different modalities, a model generates a rationale and then uses it to answer a question. Because of the hallucination issue, the generated soft negative rationales with high textual quality but illogical semantics do not always help improve answer accuracy. This study proposes a rationale generation method using soft negative sampling (SNSE-CoT) to mitigate hallucinations in multimodal CoT. Five methods were applied to generate soft negative samples that shared highly similar text but had different semantics from the original. Bidirectional margin loss (BML) was applied to introduce them into the traditional contrastive learning framework that involves only positive and negative samples. Extensive experiments on the ScienceQA dataset demonstrated the effectiveness of the proposed method. Code and data are released at https://github.com/zgMin/SNSE-CoT.