Abstract:Integrated sensing and communication holds great promise for low-altitude economy applications. However, conventional downtilted base stations primarily provide sectorized forward lobes for ground services, failing to sense air targets due to backward blind zones. In this paper, a novel antenna structure is proposed to enable air-ground beam steering, facilitating simultaneous full-space sensing and communication (S&C). Specifically, instead of inserting a reflector behind the antenna array for backlobe mitigation, an omni-steering plate is introduced to collaborate with the active array for omnidirectional beamforming. Building on this hardware innovation, sum S&C mutual information (MI) is maximized, jointly optimizing user scheduling, passive coefficients of the omni-steering plate, and beamforming of the active array. The problem is decomposed into two subproblems: one for optimizing passive coefficients via Riemannian gradient on the manifold, and the other for optimizing user scheduling and active array beamforming. Exploiting relationships among S&C MI, data decoding MMSE, and parameter estimation MMSE, the original subproblem is equivalently transformed into a sum weighted MMSE problem, rigorously established via the Lagrangian and first-order optimality conditions. Simulations show that the proposed algorithm outperforms baselines in sum-MI and MSE, while providing 360 sensing coverage. Beampattern analysis further demonstrates effective user scheduling and accurate target alignment.