Abstract:Dispersion-based photonics-assisted microwave measurement systems provide immense potential for real-time analysis of wideband and dynamic signals. However, they face two critical challenges: a difficulty in achieving high frequency resolution over a wideband analysis bandwidth, and a reliance on large-bandwidth-and-high-sampling-rate oscilloscopes to capture the resulting ultra-narrow pulses. We introduce a dynamic dispersion accumulation technique to overcome these limitations. By circulating the optical signal in fiber loops containing a dispersion-compensating fiber, we achieve a high accumulated dispersion of -215700 ps/nm. This high dispersion relaxes the required chirp rate of the chirped optical signal, enabling two distinct advantages: When the analysis bandwidth is fixed, a lower chirp rate enables a longer temporal period, yielding a record-high frequency resolution of 27.9 MHz; When the temporal period is fixed, a lower chirp rate enables a smaller bandwidth, generating a wider pulse and thus relaxing pulse sampling requirements at the expense of analysis bandwidth. This sacrifice in analysis bandwidth can be compensated by a duty-cycle-enabling technique, which holds the potential to extend the analysis bandwidth beyond 100 GHz. This work breaks the performance and hardware limitations in dispersion-based systems, paving the way for high frequency resolution, wideband microwave measurement systems that are both real-time and cost-effective.