Abstract:Recent advancements in large multimodal models (LMMs) have driven substantial progress in both text-to-video (T2V) generation and video-to-text (V2T) interpretation tasks. However, current AI-generated videos (AIGVs) still exhibit limitations in terms of perceptual quality and text-video alignment. Therefore, a reliable and scalable automatic model for AIGV evaluation is desirable, which heavily relies on the scale and quality of human annotations. To this end, we present AIGVE-60K, a comprehensive dataset and benchmark for AI-Generated Video Evaluation, which features (i) comprehensive tasks, encompassing 3,050 extensive prompts across 20 fine-grained task dimensions, (ii) the largest human annotations, including 120K mean-opinion scores (MOSs) and 60K question-answering (QA) pairs annotated on 58,500 videos generated from 30 T2V models, and (iii) bidirectional benchmarking and evaluating for both T2V generation and V2T interpretation capabilities. Based on AIGVE-60K, we propose LOVE, a LMM-based metric for AIGV Evaluation from multiple dimensions including perceptual preference, text-video correspondence, and task-specific accuracy in terms of both instance level and model level. Comprehensive experiments demonstrate that LOVE not only achieves state-of-the-art performance on the AIGVE-60K dataset, but also generalizes effectively to a wide range of other AIGV evaluation benchmarks. These findings highlight the significance of the AIGVE-60K dataset. Database and codes are anonymously available at https://github.com/IntMeGroup/LOVE.
Abstract:The rapid advancement in generative artificial intelligence have enabled the creation of 3D human faces (HFs) for applications including media production, virtual reality, security, healthcare, and game development, etc. However, assessing the quality and realism of these AI-generated 3D human faces remains a significant challenge due to the subjective nature of human perception and innate perceptual sensitivity to facial features. To this end, we conduct a comprehensive study on the quality assessment of AI-generated 3D human faces. We first introduce Gen3DHF, a large-scale benchmark comprising 2,000 videos of AI-Generated 3D Human Faces along with 4,000 Mean Opinion Scores (MOS) collected across two dimensions, i.e., quality and authenticity, 2,000 distortion-aware saliency maps and distortion descriptions. Based on Gen3DHF, we propose LMME3DHF, a Large Multimodal Model (LMM)-based metric for Evaluating 3DHF capable of quality and authenticity score prediction, distortion-aware visual question answering, and distortion-aware saliency prediction. Experimental results show that LMME3DHF achieves state-of-the-art performance, surpassing existing methods in both accurately predicting quality scores for AI-generated 3D human faces and effectively identifying distortion-aware salient regions and distortion types, while maintaining strong alignment with human perceptual judgments. Both the Gen3DHF database and the LMME3DHF will be released upon the publication.
Abstract:The rapid advancement in generative artificial intelligence have enabled the creation of 3D human faces (HFs) for applications including media production, virtual reality, security, healthcare, and game development, etc. However, assessing the quality and realism of these AI-generated 3D human faces remains a significant challenge due to the subjective nature of human perception and innate perceptual sensitivity to facial features. To this end, we conduct a comprehensive study on the quality assessment of AI-generated 3D human faces. We first introduce Gen3DHF, a large-scale benchmark comprising 2,000 videos of AI-Generated 3D Human Faces along with 4,000 Mean Opinion Scores (MOS) collected across two dimensions, i.e., quality and authenticity, 2,000 distortion-aware saliency maps and distortion descriptions. Based on Gen3DHF, we propose LMME3DHF, a Large Multimodal Model (LMM)-based metric for Evaluating 3DHF capable of quality and authenticity score prediction, distortion-aware visual question answering, and distortion-aware saliency prediction. Experimental results show that LMME3DHF achieves state-of-the-art performance, surpassing existing methods in both accurately predicting quality scores for AI-generated 3D human faces and effectively identifying distortion-aware salient regions and distortion types, while maintaining strong alignment with human perceptual judgments. Both the Gen3DHF database and the LMME3DHF will be released upon the publication.