Abstract:The growth and characterization of materials using empirical optimization typically requires a significant amount of expert time, experience, and resources. Several complementary characterization methods are routinely performed to determine the quality and properties of a grown sample. Machine learning (ML) can support the conventional approaches by using historical data to guide and provide speed and efficiency to the growth and characterization of materials. Specifically, ML can provide quantitative information from characterization data that is typically obtained from a different modality. In this study, we have investigated the feasibility of projecting the quantitative metric from microscopy measurements, such as atomic force microscopy (AFM), using data obtained from spectroscopy measurements, like Raman spectroscopy. Generative models were also trained to generate the full and specific features of the Raman and photoluminescence spectra from each other and the AFM images of the thin film MoS$_2$. The results are promising and have provided a foundational guide for the use of ML for the cross-modal characterization of materials for their accelerated, efficient, and cost-effective discovery.
Abstract:The rapid design of advanced materials is a topic of great scientific interest. The conventional, ``forward'' paradigm of materials design involves evaluating multiple candidates to determine the best candidate that matches the target properties. However, recent advances in the field of deep learning have given rise to the possibility of an ``inverse'' design paradigm for advanced materials, wherein a model provided with the target properties is able to find the best candidate. Being a relatively new concept, there remains a need to systematically evaluate how these two paradigms perform in practical applications. Therefore, the objective of this study is to directly, quantitatively compare the forward and inverse design modeling paradigms. We do so by considering two case studies of refractory high-entropy alloy design with different objectives and constraints and comparing the inverse design method to other forward schemes like localized forward search, high throughput screening, and multi objective optimization.