Abstract:The true power of computational research typically can lay in either what it accomplishes or what it enables others to accomplish. In this work, both avenues are simultaneously embraced across several distinct efforts existing at three general scales of abstractions of what a material is - atomistic, physical, and design. At each, an efficient materials informatics infrastructure is being built from the ground up based on (1) the fundamental understanding of the underlying prior knowledge, including the data, (2) deployment routes that take advantage of it, and (3) pathways to extend it in an autonomous or semi-autonomous fashion, while heavily relying on artificial intelligence (AI) to guide well-established DFT-based ab initio and CALPHAD-based thermodynamic methods. The resulting multi-level discovery infrastructure is highly generalizable as it focuses on encoding problems to solve them easily rather than looking for an existing solution. To showcase it, this dissertation discusses the design of multi-alloy functionally graded materials (FGMs) incorporating ultra-high temperature refractory high entropy alloys (RHEAs) towards gas turbine and jet engine efficiency increase reducing CO2 emissions, as well as hypersonic vehicles. It leverages a new graph representation of underlying mathematical space using a newly developed algorithm based on combinatorics, not subject to many problems troubling the community. Underneath, property models and phase relations are learned from optimized samplings of the largest and highest quality dataset of HEA in the world, called ULTERA. At the atomistic level, a data ecosystem optimized for machine learning (ML) from over 4.5 million relaxed structures, called MPDD, is used to inform experimental observations and improve thermodynamic models by providing stability data enabled by a new efficient featurization framework.
Abstract:The rapid design of advanced materials is a topic of great scientific interest. The conventional, ``forward'' paradigm of materials design involves evaluating multiple candidates to determine the best candidate that matches the target properties. However, recent advances in the field of deep learning have given rise to the possibility of an ``inverse'' design paradigm for advanced materials, wherein a model provided with the target properties is able to find the best candidate. Being a relatively new concept, there remains a need to systematically evaluate how these two paradigms perform in practical applications. Therefore, the objective of this study is to directly, quantitatively compare the forward and inverse design modeling paradigms. We do so by considering two case studies of refractory high-entropy alloy design with different objectives and constraints and comparing the inverse design method to other forward schemes like localized forward search, high throughput screening, and multi objective optimization.