Abstract:Time-efficient estimation of muscle activations and forces across multi-joint systems is critical for clinical assessment and assistive device control. However, conventional approaches are computationally expensive and lack a high-quality labeled dataset for multi-joint applications. To address these challenges, we propose a physics-informed deep learning framework that estimates muscle activations and forces directly from kinematics. The framework employs a novel Multi-Joint Cross-Attention (MJCA) module with Bidirectional Gated Recurrent Unit (BiGRU) layers to capture inter-joint coordination, enabling each joint to adaptively integrate motion information from others. By embedding multi-joint dynamics, inter-joint coupling, and external force interactions into the loss function, our Physics-Informed MJCA-BiGRU (PI-MJCA-BiGRU) delivers physiologically consistent predictions without labeled data while enabling time-efficient inference. Experimental validation on two datasets demonstrates that PI-MJCA-BiGRU achieves performance comparable to conventional supervised methods without requiring ground-truth labels, while the MJCA module significantly enhances inter-joint coordination modeling compared to other baseline architectures.
Abstract:Missing values or data is one popular characteristic of real-world datasets, especially healthcare data. This could be frustrating when using machine learning algorithms on such datasets, simply because most machine learning models perform poorly in the presence of missing values. The aim of this study is to compare the performance of seven imputation techniques, namely Mean imputation, Median Imputation, Last Observation carried Forward (LOCF) imputation, K-Nearest Neighbor (KNN) imputation, Interpolation imputation, Missforest imputation, and Multiple imputation by Chained Equations (MICE), on three healthcare datasets. Some percentage of missing values - 10\%, 15\%, 20\% and 25\% - were introduced into the dataset, and the imputation techniques were employed to impute these missing values. The comparison of their performance was evaluated by using root mean squared error (RMSE) and mean absolute error (MAE). The results show that Missforest imputation performs the best followed by MICE imputation. Additionally, we try to determine whether it is better to perform feature selection before imputation or vice versa by using the following metrics - the recall, precision, f1-score and accuracy. Due to the fact that there are few literature on this and some debate on the subject among researchers, we hope that the results from this experiment will encourage data scientists and researchers to perform imputation first before feature selection when dealing with data containing missing values.