Abstract:Large-scale pre-trained models hold significant potential for learning universal EEG representations. However, most existing methods, particularly autoregressive (AR) frameworks, primarily rely on straightforward temporal sequencing of multi-channel EEG data, which fails to capture the rich physiological characteristics inherent to EEG signals. Moreover, their time-centered modeling approach also limits the effective representation of the dynamic spatial topology of brain activity. To address these challenges and fully exploit the potential of large-scale EEG models, we propose a novel Topology Hierarchical Derived Brain Autoregressive Modeling (THD-BAR) for EEG generic representations. The core innovation of THD-BAR lies in the introduction of the Brain Topology Hierarchy (BTH), which establishes a multi-scale spatial order for EEG channels. This hierarchical structure enables a redefinition of autoregressive learning as a "next-scale-time prediction" problem, effectively capturing both spatial and temporal dynamics. Based on BTH, we design a Topology-Hierarchical Vector Quantized-Variational Autoencoder (THVQ-VAE) for multi-scale tokenization and develop an enhanced Brain Autoregressive (BAR) module with specialized masking strategies for prediction. Through extensive large-scale pre-training on 17 datasets, followed by rigorous validation on 10 downstream datasets spanning 5 distinct tasks, THD-BAR consistently outperforms existing methods. These results highlight the superior generalization and modeling capabilities of our proposed approach.
Abstract:Automated Valet Parking (AVP) requires precise localization in challenging garage conditions, including poor lighting, sparse textures, repetitive structures, dynamic scenes, and the absence of Global Positioning System (GPS) signals, which often pose problems for conventional localization methods. To address these adversities, we present AVM-SLAM, a semantic visual SLAM framework with multi-sensor fusion in a Bird's Eye View (BEV). Our framework integrates four fisheye cameras, four wheel encoders, and an Inertial Measurement Unit (IMU). The fisheye cameras form an Around View Monitor (AVM) subsystem, generating BEV images. Convolutional Neural Networks (CNNs) extract semantic features from these images, aiding in mapping and localization tasks. These semantic features provide long-term stability and perspective invariance, effectively mitigating environmental challenges. Additionally, data fusion from wheel encoders and IMU enhances system robustness by improving motion estimation and reducing drift. To validate AVM-SLAM's efficacy and robustness, we provide a large-scale, high-resolution underground garage dataset, available at https://github.com/yale-cv/avm-slam. This dataset enables researchers to further explore and assess AVM-SLAM in similar environments.