Abstract:The workspace limits the operational capabilities and range of motion for the systems with robotic arms. Maximizing workspace utilization has the potential to provide more optimal solutions for aerial manipulation tasks, increasing the system's flexibility and operational efficiency. In this paper, we introduce a novel planning framework for aerial grasping that maximizes workspace utilization. We formulate an optimization problem to optimize the aerial manipulator's trajectory, incorporating task constraints to achieve efficient manipulation. To address the challenge of incorporating the delta arm's non-convex workspace into optimization constraints, we leverage a Multilayer Perceptron (MLP) to map position points to feasibility probabilities.Furthermore, we employ Reversible Residual Networks (RevNet) to approximate the complex forward kinematics of the delta arm, utilizing efficient model gradients to eliminate workspace constraints. We validate our methods in simulations and real-world experiments to demonstrate their effectiveness.
Abstract:Efficient motion planning for Aerial Manipulators (AMs) is essential for tackling complex manipulation tasks, yet achieving coupled trajectory planning remains challenging. In this work, we propose, to the best of our knowledge, the first whole-body integrated motion planning framework for aerial manipulators, which is facilitated by an improved Safe Flight Corridor (SFC) generation strategy and high-dimensional collision-free trajectory planning. In particular, we formulate an optimization problem to generate feasible trajectories for both the quadrotor and manipulator while ensuring collision avoidance, dynamic feasibility, kinematic feasibility, and waypoint constraints. To achieve collision avoidance, we introduce a variable geometry approximation method, which dynamically models the changing collision volume induced by different manipulator configurations. Moreover, waypoint constraints in our framework are defined in $\mathrm{SE(3)\times\mathbb{R}^3}$, allowing the aerial manipulator to traverse specified positions while maintaining desired attitudes and end-effector states. The effectiveness of our framework is validated through comprehensive simulations and real-world experiments across various environments.
Abstract:Aerial Manipulators (AMs) provide a versatile platform for various applications, including 3D printing, architecture, and aerial grasping missions. However, their operational speed is often sacrificed to uphold precision. Existing control strategies for AMs often regard the manipulator as a disturbance and employ robust control methods to mitigate its influence. This research focuses on elevating the precision of the end-effector and enhancing the agility of aerial manipulator movements. We present a composite control scheme to address these challenges. Initially, a Nonlinear Disturbance Observer (NDOB) is utilized to compensate for internal coupling effects and external disturbances. Subsequently, manipulator dynamics are processed through a high pass filter to facilitate agile movements. By integrating the proposed control method into a fully autonomous delta-arm-based AM system, we substantiate the controller's efficacy through extensive real-world experiments. The outcomes illustrate that the end-effector can achieve accuracy at the millimeter level.