Abstract:In low-altitude surveillance and early warning systems, detecting weak moving targets remains a significant challenge due to low signal energy, small spatial extent, and complex background clutter. Existing methods struggle with extracting robust features and suffer from the lack of reliable annotations. To address these limitations, we propose a novel Temporal Point-Supervised (TPS) framework that enables high-performance detection of weak targets without any manual annotations.Instead of conventional frame-based detection, our framework reformulates the task as a pixel-wise temporal signal modeling problem, where weak targets manifest as short-duration pulse-like responses. A Temporal Signal Reconstruction Network (TSRNet) is developed under the TPS paradigm to reconstruct these transient signals.TSRNet adopts an encoder-decoder architecture and integrates a Dynamic Multi-Scale Attention (DMSAttention) module to enhance its sensitivity to diverse temporal patterns. Additionally, a graph-based trajectory mining strategy is employed to suppress false alarms and ensure temporal consistency.Extensive experiments on a purpose-built low-SNR dataset demonstrate that our framework outperforms state-of-the-art methods while requiring no human annotations. It achieves strong detection performance and operates at over 1000 FPS, underscoring its potential for real-time deployment in practical scenarios.
Abstract:The detection and tracking of small targets in passive optical remote sensing (PORS) has broad applications. However, most of the previously proposed methods seldom utilize the abundant temporal features formed by target motion, resulting in poor detection and tracking performance for low signal-to-clutter ratio (SCR) targets. In this article, we analyze the difficulty based on spatial features and the feasibility based on temporal features of realizing effective detection. According to this analysis, we use a multi-frame as a detection unit and propose a detection method based on temporal energy selective scaling (TESS). Specifically, we investigated the composition of intensity temporal profiles (ITPs) formed by pixels on a multi-frame detection unit. For the target-present pixel, the target passing through the pixel will bring a weak transient disturbance on the ITP and introduce a change in the statistical properties of ITP. We use a well-designed function to amplify the transient disturbance, suppress the background and noise components, and output the trajectory of the target on the multi-frame detection unit. Subsequently, to solve the contradiction between the detection rate and the false alarm rate brought by the traditional threshold segmentation, we associate the temporal and spatial features of the output trajectory and propose a trajectory extraction method based on the 3D Hough transform. Finally, we model the trajectory of the target and propose a trajectory-based multi-target tracking method. Compared with the various state-of-the-art detection and tracking methods, experiments in multiple scenarios prove the superiority of our proposed methods.