Abstract:Managing physiological variables within clinically safe target zones is a central challenge in healthcare, particularly for chronic conditions such as Type 1 Diabetes Mellitus (T1DM). Reinforcement learning (RL) offers promise for personalising treatment, but struggles with the delayed and heterogeneous effects of interventions. We propose a novel RL framework to study and support decision-making in T1DM technologies, such as automated insulin delivery. Our approach captures the complex temporal dynamics of treatment by unifying two control modalities: \textit{impulse control} for discrete, fast-acting interventions (e.g., insulin boluses), and \textit{switching control} for longer-acting treatments and regime shifts. The core of our method is a constrained Markov decision process augmented with physiological state features, enabling safe policy learning under clinical and resource constraints. The framework incorporates biologically realistic factors, including insulin decay, leading to policies that better reflect real-world therapeutic behaviour. While not intended for clinical deployment, this work establishes a foundation for future safe and temporally-aware RL in healthcare. We provide theoretical guarantees of convergence and demonstrate empirical improvements in a stylised T1DM control task, reducing blood glucose level violations from 22.4\% (state-of-the-art) to as low as 10.8\%.
Abstract:Deep learning has made significant progress in addressing challenges in various fields including computational pathology (CPath). However, due to the complexity of the domain shift problem, the performance of existing models will degrade, especially when it comes to multi-domain or cross-domain tasks. In this paper, we propose a Test-time style transfer (T3s) that uses a bidirectional mapping mechanism to project the features of the source and target domains into a unified feature space, enhancing the generalization ability of the model. To further increase the style expression space, we introduce a Cross-domain style diversification module (CSDM) to ensure the orthogonality between style bases. In addition, data augmentation and low-rank adaptation techniques are used to improve feature alignment and sensitivity, enabling the model to adapt to multi-domain inputs effectively. Our method has demonstrated effectiveness on three unseen datasets.