Abstract:The rapid detection of abnormal body temperatures in urban populations is essential for managing public health risks, especially during outbreaks of infectious diseases. Multi-drone thermal screening systems offer promising solutions for fast, large-scale, and non-intrusive human temperature monitoring. However, trajectory planning for multiple drones in complex urban environments poses significant challenges, including collision avoidance, coverage efficiency, and constrained flight environments. In this study, we propose an enhanced trust region sequential convex optimization (TR-SCO) algorithm for optimal trajectory planning of multiple drones performing thermal screening tasks. Our improved algorithm integrates a refined convex optimization formulation within a trust region framework, effectively balancing trajectory smoothness, obstacle avoidance, altitude constraints, and maximum screening coverage. Simulation results demonstrate that our approach significantly improves trajectory optimality and computational efficiency compared to conventional convex optimization methods. This research provides critical insights and practical contributions toward deploying efficient multi-drone systems for real-time thermal screening in urban areas. For reader who are interested in our research, we release our source code at https://github.com/Cherry0302/Enhanced-TR-SCO.
Abstract:This paper addresses the problem of trajectory optimization for unmanned aerial vehicles (UAVs) performing time-sensitive medical deliveries in urban environments. Specifically, we consider a single UAV with 3 degree-of-freedom dynamics tasked with delivering blood packages to multiple hospitals, each with a predefined time window and priority. Mission objectives are encoded using Signal Temporal Logic (STL), enabling the formal specification of spatial-temporal constraints. To ensure safety, city buildings are modeled as 3D convex obstacles, and obstacle avoidance is handled through a Convex Feasible Set (CFS) method. The entire planning problem-combining UAV dynamics, STL satisfaction, and collision avoidance-is formulated as a convex optimization problem that ensures tractability and can be solved efficiently using standard convex programming techniques. Simulation results demonstrate that the proposed method generates dynamically feasible, collision-free trajectories that satisfy temporal mission goals, providing a scalable and reliable approach for autonomous UAV-based medical logistics.
Abstract:In post-disaster scenarios, rapid and efficient delivery of medical resources is critical and challenging due to severe damage to infrastructure. To provide an optimized solution, we propose a cooperative trajectory optimization and task allocation framework leveraging unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). This study integrates a Genetic Algorithm (GA) for efficient task allocation among multiple UAVs and UGVs, and employs an informed-RRT* (Rapidly-exploring Random Tree Star) algorithm for collision-free trajectory generation. Further optimization of task sequencing and path efficiency is conducted using Covariance Matrix Adaptation Evolution Strategy (CMA-ES). Simulation experiments conducted in a realistic post-disaster environment demonstrate that our proposed approach significantly improves the overall efficiency of medical rescue operations compared to traditional strategies, showing substantial reductions in total mission completion time and traveled distance. Additionally, the cooperative utilization of UAVs and UGVs effectively balances their complementary advantages, highlighting the system' s scalability and practicality for real-world deployment.