Alert button
Picture for Volodymyr V. Kindratenko

Volodymyr V. Kindratenko

Alert button

FAIR AI Models in High Energy Physics

Dec 21, 2022
Javier Duarte, Haoyang Li, Avik Roy, Ruike Zhu, E. A. Huerta, Daniel Diaz, Philip Harris, Raghav Kansal, Daniel S. Katz, Ishaan H. Kavoori, Volodymyr V. Kindratenko, Farouk Mokhtar, Mark S. Neubauer, Sang Eon Park, Melissa Quinnan, Roger Rusack, Zhizhen Zhao

Figure 1 for FAIR AI Models in High Energy Physics
Figure 2 for FAIR AI Models in High Energy Physics
Figure 3 for FAIR AI Models in High Energy Physics
Figure 4 for FAIR AI Models in High Energy Physics

The findable, accessible, interoperable, and reusable (FAIR) data principles have provided a framework for examining, evaluating, and improving how we share data with the aim of facilitating scientific discovery. Efforts have been made to generalize these principles to research software and other digital products. Artificial intelligence (AI) models -- algorithms that have been trained on data rather than explicitly programmed -- are an important target for this because of the ever-increasing pace with which AI is transforming scientific and engineering domains. In this paper, we propose a practical definition of FAIR principles for AI models and create a FAIR AI project template that promotes adherence to these principles. We demonstrate how to implement these principles using a concrete example from experimental high energy physics: a graph neural network for identifying Higgs bosons decaying to bottom quarks. We study the robustness of these FAIR AI models and their portability across hardware architectures and software frameworks, and report new insights on the interpretability of AI predictions by studying the interplay between FAIR datasets and AI models. Enabled by publishing FAIR AI models, these studies pave the way toward reliable and automated AI-driven scientific discovery.

* 32 pages, 8 figures, 9 tables 
Viaarxiv icon

A FAIR and AI-ready Higgs Boson Decay Dataset

Aug 04, 2021
Yifan Chen, E. A. Huerta, Javier Duarte, Philip Harris, Daniel S. Katz, Mark S. Neubauer, Daniel Diaz, Farouk Mokhtar, Raghav Kansal, Sang Eon Park, Volodymyr V. Kindratenko, Zhizhen Zhao, Roger Rusack

Figure 1 for A FAIR and AI-ready Higgs Boson Decay Dataset
Figure 2 for A FAIR and AI-ready Higgs Boson Decay Dataset
Figure 3 for A FAIR and AI-ready Higgs Boson Decay Dataset
Figure 4 for A FAIR and AI-ready Higgs Boson Decay Dataset

To enable the reusability of massive scientific datasets by humans and machines, researchers aim to create scientific datasets that adhere to the principles of findability, accessibility, interoperability, and reusability (FAIR) for data and artificial intelligence (AI) models. This article provides a domain-agnostic, step-by-step assessment guide to evaluate whether or not a given dataset meets each FAIR principle. We then demonstrate how to use this guide to evaluate the FAIRness of an open simulated dataset produced by the CMS Collaboration at the CERN Large Hadron Collider. This dataset consists of Higgs boson decays and quark and gluon background, and is available through the CERN Open Data Portal. We also use other available tools to assess the FAIRness of this dataset, and incorporate feedback from members of the FAIR community to validate our results. This article is accompanied by a Jupyter notebook to facilitate an understanding and exploration of the dataset, including visualization of its elements. This study marks the first in a planned series of articles that will guide scientists in the creation and quantification of FAIRness in high energy particle physics datasets and AI models.

* 14 pages, 3 figures. Learn about the FAIR4HEP project at 
Viaarxiv icon