Abstract:This paper describes the 4th-place solution by team ambitious for the RecSys Challenge 2025, organized by Synerise and ACM RecSys, which focused on universal behavioral modeling. The challenge objective was to generate user embeddings effective across six diverse downstream tasks. Our solution integrates (1) a sequential encoder to capture the temporal evolution of user interests, (2) a graph neural network to enhance generalization, (3) a deep cross network to model high-order feature interactions, and (4) performance-critical feature engineering.
Abstract:Recent recommender system advancements have focused on developing sequence-based and graph-based approaches. Both approaches proved useful in modeling intricate relationships within behavioral data, leading to promising outcomes in personalized ranking and next-item recommendation tasks while maintaining good scalability. However, they capture very different signals from data. While the former approach represents users directly through ordered interactions with recent items, the latter aims to capture indirect dependencies across the interactions graph. This paper presents a novel multi-representational learning framework exploiting these two paradigms' synergies. Our empirical evaluation on several datasets demonstrates that mutual training of sequential and graph components with the proposed framework significantly improves recommendations performance.