Abstract:Many recommender systems in long-form video streaming reply on batch-trained models and batch-updated features, where user features are updated daily and served statically throughout the day. While efficient, this approach fails to incorporate a user's most recent actions, often resulting in stale recommendations. In this work, we present a lightweight, model-agnostic approach for intra-day personalization that selectively injects recent watch history at inference time without requiring model retraining. Our approach selectively overrides stale user features at inference time using the recent watch history, allowing the system to adapt instantly to evolving preferences. By reducing the personalization feedback loop from daily to intra-day, we observed a statistically significant 0.47% increase in key user engagement metrics which ranked among the most substantial engagement gains observed in recent experimentation cycles. To our knowledge, this is the first published evidence that intra-day personalization can drive meaningful impact in long-form video streaming service, providing a compelling alternative to full real-time architectures where model retraining is required.
Abstract:Exploration is essential to improve long-term recommendation quality, but it often degrades short-term business performance, especially in remote-first TV environments where users engage passively, expect instant relevance, and offer few chances for correction. This paper introduces an approach for delivering content-level exploration safely and efficiently by optimizing its placement based on reach and opportunity cost. Deployed on a large-scale streaming platform with over 100 million monthly active users, our approach identifies scroll-depth regions with lower engagement and strategically introduces a dedicated container, the "Something Completely Different" row containing randomized content. Rather than enforcing exploration uniformly across the user interface (UI), we condition its appearance on empirically low-cost, high-reach positions to ensure minimal tradeoff against platform-level watch time goals. Extensive A/B testing shows that this strategy preserves business metrics while collecting unbiased interaction data. Our method complements existing intra-row diversification and bandit-based exploration techniques by introducing a deployable, behaviorally informed mechanism for surfacing exploratory content at scale. Moreover, we demonstrate that the collected unbiased data, integrated into downstream candidate generation, significantly improves user engagement, validating its value for recommender systems.