Abstract:Driving Scene understanding is a key ingredient for intelligent transportation systems. To achieve systems that can operate in a complex physical and social environment, they need to understand and learn how humans drive and interact with traffic scenes. We present the Honda Research Institute Driving Dataset (HDD), a challenging dataset to enable research on learning driver behavior in real-life environments. The dataset includes 104 hours of real human driving in the San Francisco Bay Area collected using an instrumented vehicle equipped with different sensors. We provide a detailed analysis of HDD with a comparison to other driving datasets. A novel annotation methodology is introduced to enable research on driver behavior understanding from untrimmed data sequences. As the first step, baseline algorithms for driver behavior detection are trained and tested to demonstrate the feasibility of the proposed task.
Abstract:Dense video captioning is a fine-grained video understanding task that involves two sub-problems: localizing distinct events in a long video stream, and generating captions for the localized events. We propose the Joint Event Detection and Description Network (JEDDi-Net), which solves the dense video captioning task in an end-to-end fashion. Our model continuously encodes the input video stream with three-dimensional convolutional layers, proposes variable-length temporal events based on pooled features, and generates their captions. Unlike existing approaches, our event proposal generation and language captioning networks are trained jointly and end-to-end, allowing for improved temporal segmentation. In order to explicitly model temporal relationships between visual events and their captions in a single video, we also propose a two-level hierarchical captioning module that keeps track of context. On the large-scale ActivityNet Captions dataset, JEDDi-Net demonstrates improved results as measured by standard metrics. We also present the first dense captioning results on the TACoS-MultiLevel dataset.
Abstract:Neural image/video captioning models can generate accurate descriptions, but their internal process of mapping regions to words is a black box and therefore difficult to explain. Top-down neural saliency methods can find important regions given a high-level semantic task such as object classification, but cannot use a natural language sentence as the top-down input for the task. In this paper, we propose Caption-Guided Visual Saliency to expose the region-to-word mapping in modern encoder-decoder networks and demonstrate that it is learned implicitly from caption training data, without any pixel-level annotations. Our approach can produce spatial or spatiotemporal heatmaps for both predicted captions, and for arbitrary query sentences. It recovers saliency without the overhead of introducing explicit attention layers, and can be used to analyze a variety of existing model architectures and improve their design. Evaluation on large-scale video and image datasets demonstrates that our approach achieves comparable captioning performance with existing methods while providing more accurate saliency heatmaps. Our code is available at visionlearninggroup.github.io/caption-guided-saliency/.
Abstract:Generating natural language descriptions for in-the-wild videos is a challenging task. Most state-of-the-art methods for solving this problem borrow existing deep convolutional neural network (CNN) architectures (AlexNet, GoogLeNet) to extract a visual representation of the input video. However, these deep CNN architectures are designed for single-label centered-positioned object classification. While they generate strong semantic features, they have no inherent structure allowing them to detect multiple objects of different sizes and locations in the frame. Our paper tries to solve this problem by integrating the base CNN into several fully convolutional neural networks (FCNs) to form a multi-scale network that handles multiple receptive field sizes in the original image. FCNs, previously applied to image segmentation, can generate class heat-maps efficiently compared to sliding window mechanisms, and can easily handle multiple scales. To further handle the ambiguity over multiple objects and locations, we incorporate the Multiple Instance Learning mechanism (MIL) to consider objects in different positions and at different scales simultaneously. We integrate our multi-scale multi-instance architecture with a sequence-to-sequence recurrent neural network to generate sentence descriptions based on the visual representation. Ours is the first end-to-end trainable architecture that is capable of multi-scale region processing. Evaluation on a Youtube video dataset shows the advantage of our approach compared to the original single-scale whole frame CNN model. Our flexible and efficient architecture can potentially be extended to support other video processing tasks.