Abstract:Federated Learning (FL) is a distributed Machine Learning (ML) setup, where a shared model is collaboratively trained by various clients using their local datasets while keeping the data private. Considering resource-constrained devices, FL clients often suffer from restricted transmission capacity. Aiming to enhance the system performance, the communication between clients and server needs to be diminished. Current FL strategies transmit a tremendous amount of data (model weights) within the FL process, which needs a high communication bandwidth. Considering resource constraints, increasing the number of clients and, consequently, the amount of data (model weights) can lead to a bottleneck. In this paper, we introduce the Federated Black Widow Optimization (FedBWO) technique to decrease the amount of transmitted data by transmitting only a performance score rather than the local model weights from clients. FedBWO employs the BWO algorithm to improve local model updates. The conducted experiments prove that FedBWO remarkably improves the performance of the global model and the communication efficiency of the overall system. According to the experimental outcomes, FedBWO enhances the global model accuracy by an average of 21% over FedAvg, and 12% over FedGWO. Furthermore, FedBWO dramatically decreases the communication cost compared to other methods.
Abstract:Diabetes is a chronic disorder identified by the high sugar level in the blood that can cause various different disorders such as kidney failure, heart attack, sightlessness, and stroke. Developments in the healthcare domain by facilitating the early detection of diabetes risk can help not only caregivers but also patients. AIoMT is a recent technology that integrates IoT and machine learning methods to give services for medical purposes, which is a powerful technology for the early detection of diabetes. In this paper, we take advantage of AIoMT and propose a hybrid diabetes risk detection method, DiabML, which uses the BWO algorithm and ML methods. BWO is utilized for feature selection and SMOTE for imbalance handling in the pre-processing procedure. The simulation results prove the superiority of the proposed DiabML method compared to the existing works. DiabML achieves 86.1\% classification accuracy by AdaBoost classifier outperforms the relevant existing methods.
Abstract:The demand for real-time, affordable, and efficient smart healthcare services is increasing exponentially due to the technological revolution and burst of population. To meet the increasing demands on this critical infrastructure, there is a need for intelligent methods to cope with the existing obstacles in this area. In this regard, edge computing technology can reduce latency and energy consumption by moving processes closer to the data sources in comparison to the traditional centralized cloud and IoT-based healthcare systems. In addition, by bringing automated insights into the smart healthcare systems, artificial intelligence (AI) provides the possibility of detecting and predicting high-risk diseases in advance, decreasing medical costs for patients, and offering efficient treatments. The objective of this article is to highlight the benefits of the adoption of edge intelligent technology, along with AI in smart healthcare systems. Moreover, a novel smart healthcare model is proposed to boost the utilization of AI and edge technology in smart healthcare systems. Additionally, the paper discusses issues and research directions arising when integrating these different technologies together.