Abstract:In large-scale maintenance organizations, identifying subject matter experts and managing communications across complex entities relationships poses significant challenges -- including information overload and longer response times -- that traditional communication approaches fail to address effectively. We propose a novel framework that combines RDF graph databases with LLMs to process natural language queries for precise audience targeting, while providing transparent reasoning through a planning-orchestration architecture. Our solution enables communication owners to formulate intuitive queries combining concepts such as equipment, manufacturers, maintenance engineers, and facilities, delivering explainable results that maintain trust in the system while improving communication efficiency across the organization.
Abstract:In this paper, we present the Hierarchy-of-Visual-Words (HoVW), a novel trademark image retrieval (TIR) method that decomposes images into simpler geometric shapes and defines a descriptor for binary trademark image representation by encoding the hierarchical arrangement of component shapes. The proposed hierarchical organization of visual data stores each component shape as a visual word. It is capable of representing the geometry of individual elements and the topology of the trademark image, making the descriptor robust against linear as well as to some level of nonlinear transformation. Experiments show that HoVW outperforms previous TIR methods on the MPEG-7 CE-1 and MPEG-7 CE-2 image databases.