Abstract:Fluence map prediction is central to automated radiotherapy planning but remains an ill-posed inverse problem due to the complex relationship between volumetric anatomy and beam-intensity modulation. Convolutional methods in prior work often struggle to capture long-range dependencies, which can lead to structurally inconsistent or physically unrealizable plans. We introduce \textbf{FluenceFormer}, a backbone-agnostic transformer framework for direct, geometry-aware fluence regression. The model uses a unified two-stage design: Stage~1 predicts a global dose prior from anatomical inputs, and Stage~2 conditions this prior on explicit beam geometry to regress physically calibrated fluence maps. Central to the approach is the \textbf{Fluence-Aware Regression (FAR)} loss, a physics-informed objective that integrates voxel-level fidelity, gradient smoothness, structural consistency, and beam-wise energy conservation. We evaluate the generality of the framework across multiple transformer backbones, including Swin UNETR, UNETR, nnFormer, and MedFormer, using a prostate IMRT dataset. FluenceFormer with Swin UNETR achieves the strongest performance among the evaluated models and improves over existing benchmark CNN and single-stage methods, reducing Energy Error to $\mathbf{4.5\%}$ and yielding statistically significant gains in structural fidelity ($p < 0.05$).
Abstract:Accurate fluence map prediction is essential in intensity-modulated radiation therapy (IMRT) to maximize tumor coverage while minimizing dose to healthy tissues. Conventional optimization is time-consuming and dependent on planner expertise. This study presents a deep learning framework that accelerates fluence map generation while maintaining clinical quality. An end-to-end 3D Swin-UNETR network was trained to predict nine-beam fluence maps directly from volumetric CT images and anatomical contours using 99 prostate IMRT cases (79 for training and 20 for testing). The transformer-based model employs hierarchical self-attention to capture both local anatomical structures and long-range spatial dependencies. Predicted fluence maps were imported into the Eclipse Treatment Planning System for dose recalculation, and model performance was evaluated using beam-wise fluence correlation, spatial gamma analysis, and dose-volume histogram (DVH) metrics. The proposed model achieved an average R^2 of 0.95 +/- 0.02, MAE of 0.035 +/- 0.008, and gamma passing rate of 85 +/- 10 percent (3 percent / 3 mm) on the test set, with no significant differences observed in DVH parameters between predicted and clinical plans. The Swin-UNETR framework enables fully automated, inverse-free fluence map prediction directly from anatomical inputs, enhancing spatial coherence, accuracy, and efficiency while offering a scalable and consistent solution for automated IMRT plan generation.