Abstract:Recent text-to-image diffusion models have achieved remarkable visual fidelity but often struggle with semantic alignment to complex prompts. We introduce CritiFusion, a novel inference-time framework that integrates a multimodal semantic critique mechanism with frequency-domain refinement to improve text-to-image consistency and detail. The proposed CritiCore module leverages a vision-language model and multiple large language models to enrich the prompt context and produce high-level semantic feedback, guiding the diffusion process to better align generated content with the prompt's intent. Additionally, SpecFusion merges intermediate generation states in the spectral domain, injecting coarse structural information while preserving high-frequency details. No additional model training is required. CritiFusion serves as a plug-in refinement stage compatible with existing diffusion backbones. Experiments on standard benchmarks show that our method notably improves human-aligned metrics of text-to-image correspondence and visual quality. CritiFusion consistently boosts performance on human preference scores and aesthetic evaluations, achieving results on par with state-of-the-art reward optimization approaches. Qualitative results further demonstrate superior detail, realism, and prompt fidelity, indicating the effectiveness of our semantic critique and spectral alignment strategy.
Abstract:We present IMDD-1M, the first large-scale Industrial Multimodal Defect Dataset comprising 1,000,000 aligned image-text pairs, designed to advance multimodal learning for manufacturing and quality inspection. IMDD-1M contains high-resolution real-world defects spanning over 60 material categories and more than 400 defect types, each accompanied by expert-verified annotations and fine-grained textual descriptions detailing defect location, severity, and contextual attributes. This dataset enables a wide spectrum of applications, including classification, segmentation, retrieval, captioning, and generative modeling. Building upon IMDD-1M, we train a diffusion-based vision-language foundation model from scratch, specifically tailored for industrial scenarios. The model serves as a generalizable foundation that can be efficiently adapted to specialized domains through lightweight fine-tuning. With less than 5% of the task-specific data required by dedicated expert models, it achieves comparable performance, highlighting the potential of data-efficient foundation model adaptation for industrial inspection and generation, paving the way for scalable, domain-adaptive, and knowledge-grounded manufacturing intelligence.
Abstract:We propose a Vision-Language Simulation Model (VLSM) that unifies visual and textual understanding to synthesize executable FlexScript from layout sketches and natural-language prompts, enabling cross-modal reasoning for industrial simulation systems. To support this new paradigm, the study constructs the first large-scale dataset for generative digital twins, comprising over 120,000 prompt-sketch-code triplets that enable multimodal learning between textual descriptions, spatial structures, and simulation logic. In parallel, three novel evaluation metrics, Structural Validity Rate (SVR), Parameter Match Rate (PMR), and Execution Success Rate (ESR), are proposed specifically for this task to comprehensively evaluate structural integrity, parameter fidelity, and simulator executability. Through systematic ablation across vision encoders, connectors, and code-pretrained language backbones, the proposed models achieve near-perfect structural accuracy and high execution robustness. This work establishes a foundation for generative digital twins that integrate visual reasoning and language understanding into executable industrial simulation systems.