Abstract:Image understanding relies heavily on accurate multi-label classification. In recent years deep learning (DL) algorithms have become very successful tools for multi-label classification of image objects. With these set of tools, various implementations of DL algorithms have been released for the public use in the form of application programming interfaces (API). In this study, we evaluate and compare 10 of the most prominent publicly available APIs in a best-of-breed challenge. The evaluation is performed on the Visual Genome labeling benchmark dataset using 12 well-recognized similarity metrics. In addition, for the first time in this kind of comparison, we use a semantic similarity metric to evaluate the semantic similarity performance of these APIs. In this evaluation, Microsoft's Computer Vision, TensorFlow, Imagga, and IBM's Visual Recognition showed better performance than the other APIs. Furthermore, the new semantic similarity metric allowed deeper insights for comparison.
Abstract:Neural networks have become an increasingly popular solution for network intrusion detection systems (NIDS). Their capability of learning complex patterns and behaviors make them a suitable solution for differentiating between normal traffic and network attacks. However, a drawback of neural networks is the amount of resources needed to train them. Many network gateways and routers devices, which could potentially host an NIDS, simply do not have the memory or processing power to train and sometimes even execute such models. More importantly, the existing neural network solutions are trained in a supervised manner. Meaning that an expert must label the network traffic and update the model manually from time to time. In this paper, we present Kitsune: a plug and play NIDS which can learn to detect attacks on the local network, without supervision, and in an efficient online manner. Kitsune's core algorithm (KitNET) uses an ensemble of neural networks called autoencoders to collectively differentiate between normal and abnormal traffic patterns. KitNET is supported by a feature extraction framework which efficiently tracks the patterns of every network channel. Our evaluations show that Kitsune can detect various attacks with a performance comparable to offline anomaly detectors, even on a Raspberry PI. This demonstrates that Kitsune can be a practical and economic NIDS.