Abstract:Malicious Unmanned Aerial Vehicles (UAVs) present a significant threat to next-generation networks (NGNs), posing risks such as unauthorized surveillance, data theft, and the delivery of hazardous materials. This paper proposes an integrated (AE)-classifier system to detect malicious UAVs. The proposed AE, based on a 4-layer Tri-orientated Spatial Mamba (TSMamba) architecture, effectively captures complex spatial relationships crucial for identifying malicious UAV activities. The first phase involves generating residual values through the AE, which are subsequently processed by a ResNet-based classifier. This classifier leverages the residual values to achieve lower complexity and higher accuracy. Our experiments demonstrate significant improvements in both binary and multi-class classification scenarios, achieving up to 99.8 % recall compared to 96.7 % in the benchmark. Additionally, our method reduces computational complexity, making it more suitable for large-scale deployment. These results highlight the robustness and scalability of our approach, offering an effective solution for malicious UAV detection in NGN environments.
Abstract:In the realm of machine learning (ML) systems featuring client-host connections, the enhancement of privacy security can be effectively achieved through federated learning (FL) as a secure distributed ML methodology. FL effectively integrates cloud infrastructure to transfer ML models onto edge servers using blockchain technology. Through this mechanism, it guarantees the streamlined processing and data storage requirements of both centralized and decentralized systems, with an emphasis on scalability, privacy considerations, and cost-effective communication. In current FL implementations, data owners locally train their models, and subsequently upload the outcomes in the form of weights, gradients, and parameters to the cloud for overall model aggregation. This innovation obviates the necessity of engaging Internet of Things (IoT) clients and participants to communicate raw and potentially confidential data directly with a cloud center. This not only reduces the costs associated with communication networks but also enhances the protection of private data. This survey conducts an analysis and comparison of recent FL applications, aiming to assess their efficiency, accuracy, and privacy protection. However, in light of the complex and evolving nature of FL, it becomes evident that additional research is imperative to address lingering knowledge gaps and effectively confront the forthcoming challenges in this field. In this study, we categorize recent literature into the following clusters: privacy protection, resource allocation, case study analysis, and applications. Furthermore, at the end of each section, we tabulate the open areas and future directions presented in the referenced literature, affording researchers and scholars an insightful view of the evolution of the field.