Chalmers University of Technology
Abstract:Membership inference attacks (MIAs) aim to determine whether specific data were used to train a model. While extensively studied on classification models, their impact on time series forecasting remains largely unexplored. We address this gap by introducing two new attacks: (i) an adaptation of multivariate LiRA, a state-of-the-art MIA originally developed for classification models, to the time-series forecasting setting, and (ii) a novel end-to-end learning approach called Deep Time Series (DTS) attack. We benchmark these methods against adapted versions of other leading attacks from the classification setting. We evaluate all attacks in realistic settings on the TUH-EEG and ELD datasets, targeting two strong forecasting architectures, LSTM and the state-of-the-art N-HiTS, under both record- and user-level threat models. Our results show that forecasting models are vulnerable, with user-level attacks often achieving perfect detection. The proposed methods achieve the strongest performance in several settings, establishing new baselines for privacy risk assessment in time series forecasting. Furthermore, vulnerability increases with longer prediction horizons and smaller training populations, echoing trends observed in large language models.
Abstract:What happens if we encounter a suitable font for our design work but do not know its name? Visual Font Recognition (VFR) systems are used to identify the font typeface in an image. These systems can assist graphic designers in identifying fonts used in images. A VFR system also aids in improving the speed and accuracy of Optical Character Recognition (OCR) systems. In this paper, we introduce the first publicly available datasets in the field of Persian font recognition and employ Convolutional Neural Networks (CNN) to address this problem. The results show that the proposed pipeline obtained 78.0% top-1 accuracy on our new datasets, 89.1% on the IDPL-PFOD dataset, and 94.5% on the KAFD dataset. Furthermore, the average time spent in the entire pipeline for one sample of our proposed datasets is 0.54 and 0.017 seconds for CPU and GPU, respectively. We conclude that CNN methods can be used to recognize Persian fonts without the need for additional pre-processing steps such as feature extraction, binarization, normalization, etc.