Abstract:Radiative transfer is a fundamental process in astrophysics, essential for both interpreting observations and modeling thermal and dynamical feedback in simulations via ionizing radiation and photon pressure. However, numerically solving the underlying radiative transfer equation is computationally intensive due to the complex interaction of light with matter and the disparity between the speed of light and the typical gas velocities in astrophysical environments, making it particularly expensive to include the effects of on-the-fly radiation in hydrodynamic simulations. This motivates the development of surrogate models that can significantly accelerate radiative transfer calculations while preserving high accuracy. We present a surrogate model based on a Fourier Neural Operator architecture combined with U-Nets. Our model approximates three-dimensional, monochromatic radiative transfer in time-dependent regimes, in absorption-emission approximation, achieving speedups of more than 2 orders of magnitude while maintaining an average relative error below 3%, demonstrating our approach's potential to be integrated into state-of-the-art hydrodynamic simulations.
Abstract:We present $\texttt{LAMINAR}$, a novel unsupervised machine learning pipeline designed to enhance the representation of structure within data via producing a more-informative distance metric. Analysis methods in the physical sciences often rely on standard metrics to define geometric relationships in data, which may fail to capture the underlying structure of complex data sets. $\texttt{LAMINAR}$ addresses this by using a continuous-normalising-flow and inverse-transform-sampling to define a Riemannian manifold in the data space without the need for the user to specify a metric over the data a-priori. The result is a locally-adaptive-metric that produces structurally-informative density-based distances. We demonstrate the utility of $\texttt{LAMINAR}$ by comparing its output to the Euclidean metric for structured data sets.
Abstract:We introduce CODES, a benchmark for comprehensive evaluation of surrogate architectures for coupled ODE systems. Besides standard metrics like mean squared error (MSE) and inference time, CODES provides insights into surrogate behaviour across multiple dimensions like interpolation, extrapolation, sparse data, uncertainty quantification and gradient correlation. The benchmark emphasizes usability through features such as integrated parallel training, a web-based configuration generator, and pre-implemented baseline models and datasets. Extensive documentation ensures sustainability and provides the foundation for collaborative improvement. By offering a fair and multi-faceted comparison, CODES helps researchers select the most suitable surrogate for their specific dataset and application while deepening our understanding of surrogate learning behaviour.
Abstract:In astrophysics, solving complex chemical reaction networks is essential but computationally demanding due to the high dimensionality and stiffness of the ODE systems. Traditional approaches for reducing computational load are often specialized to specific chemical networks and require expert knowledge. This paper introduces a machine learning-based solution employing autoencoders for dimensionality reduction and a latent space neural ODE solver to accelerate astrochemical reaction network computations. Additionally, we propose a cost-effective latent space linear function solver as an alternative to neural ODEs. These methods are assessed on a dataset comprising 29 chemical species and 224 reactions. Our findings demonstrate that the neural ODE achieves a 55x speedup over the baseline model while maintaining significantly higher accuracy by up to two orders of magnitude reduction in relative error. Furthermore, the linear latent model enhances accuracy and achieves a speedup of up to 4000x compared to standard methods.