



Abstract:Many cable management tasks involve separating out the different cables and removing tangles. Automating this task is challenging because cables are deformable and can have combinations of knots and multiple interwoven segments. Prior works have focused on untying knots in one cable, which is one subtask of cable management. However, in this paper, we focus on a different subtask called multi-cable unweaving, which refers to removing the intersections among multiple interwoven cables to separate them and facilitate further manipulation. We propose a method that utilizes visual feedback to unweave a bundle of loosely entangled cables. We formulate cable unweaving as a pick-and-place problem, where the grasp position is selected from discrete nodes in a graph-based cable state representation. Our cable state representation encodes both topological and geometric information about the cables from the visual image. To predict future cable states and identify valid actions, we present a novel state transition model that takes into account the straightening and bending of cables during manipulation. Using this state transition model, we select between two high-level action primitives and calculate predicted immediate costs to optimize the lower-level actions. We experimentally demonstrate that iterating the above perception-planning-action process enables unweaving electric cables and shoelaces with an 84% success rate on average.
Abstract:Loop closure is critical in Simultaneous Localization and Mapping (SLAM) systems to reduce accumulative drift and ensure global mapping consistency. However, conventional methods struggle in perceptually aliased environments, such as narrow pipes, due to vector quantization, feature sparsity, and repetitive textures, while existing solutions often incur high computational costs. This paper presents Bag-of-Word-Groups (BoWG), a novel loop closure detection method that achieves superior precision-recall, robustness, and computational efficiency. The core innovation lies in the introduction of word groups, which captures the spatial co-occurrence and proximity of visual words to construct an online dictionary. Additionally, drawing inspiration from probabilistic transition models, we incorporate temporal consistency directly into similarity computation with an adaptive scheme, substantially improving precision-recall performance. The method is further strengthened by a feature distribution analysis module and dedicated post-verification mechanisms. To evaluate the effectiveness of our method, we conduct experiments on both public datasets and a confined-pipe dataset we constructed. Results demonstrate that BoWG surpasses state-of-the-art methods, including both traditional and learning-based approaches, in terms of precision-recall and computational efficiency. Our approach also exhibits excellent scalability, achieving an average processing time of 16 ms per image across 17,565 images in the Bicocca25b dataset.
Abstract:Despite the rich literature on machine learning fairness, relatively little attention has been paid to remediating complex systems, where the final prediction is the combination of multiple classifiers and where multiple groups are present. In this paper, we first show that natural baseline approaches for improving equal opportunity fairness scale linearly with the product of the number of remediated groups and the number of remediated prediction labels, rendering them impractical. We then introduce two simple techniques, called {\em task-overconditioning} and {\em group-interleaving}, to achieve a constant scaling in this multi-group multi-label setup. Our experimental results in academic and real-world environments demonstrate the effectiveness of our proposal at mitigation within this environment.