Alert button
Picture for Timo Ojala

Timo Ojala

Alert button

Exploring the Efficacy of Base Data Augmentation Methods in Deep Learning-Based Radiograph Classification of Knee Joint Osteoarthritis

Add code
Bookmark button
Alert button
Nov 10, 2023
Fabi Prezja, Leevi Annala, Sampsa Kiiskinen, Timo Ojala

Viaarxiv icon

Adaptive Variance Thresholding: A Novel Approach to Improve Existing Deep Transfer Vision Models and Advance Automatic Knee-Joint Osteoarthritis Classification

Add code
Bookmark button
Alert button
Nov 10, 2023
Fabi Prezja, Leevi Annala, Sampsa Kiiskinen, Suvi Lahtinen, Timo Ojala

Viaarxiv icon

Synthesizing Bidirectional Temporal States of Knee Osteoarthritis Radiographs with Cycle-Consistent Generative Adversarial Neural Networks

Add code
Bookmark button
Alert button
Nov 10, 2023
Fabi Prezja, Leevi Annala, Sampsa Kiiskinen, Suvi Lahtinen, Timo Ojala

Viaarxiv icon

Improving Performance in Colorectal Cancer Histology Decomposition using Deep and Ensemble Machine Learning

Add code
Bookmark button
Alert button
Oct 25, 2023
Fabi Prezja, Leevi Annala, Sampsa Kiiskinen, Suvi Lahtinen, Timo Ojala, Pekka Ruusuvuori, Teijo Kuopio

Viaarxiv icon

Leaning-Based Control of an Immersive-Telepresence Robot

Add code
Bookmark button
Alert button
Aug 22, 2022
Joona Halkola, Markku Suomalainen, Basak Sakcak, Katherine J. Mimnaugh, Juho Kalliokoski, Alexis P. Chambers, Timo Ojala, Steven M. LaValle

Figure 1 for Leaning-Based Control of an Immersive-Telepresence Robot
Figure 2 for Leaning-Based Control of an Immersive-Telepresence Robot
Figure 3 for Leaning-Based Control of an Immersive-Telepresence Robot
Figure 4 for Leaning-Based Control of an Immersive-Telepresence Robot
Viaarxiv icon

HI-DWA: Human-Influenced Dynamic Window Approach for Shared Control of a Telepresence Robot

Add code
Bookmark button
Alert button
Mar 05, 2022
Juho Kalliokoski, Basak Sakcak, Markku Suomalainen, Katherine J. Mimnaugh, Alexis P. Chambers, Timo Ojala, Steven M. LaValle

Figure 1 for HI-DWA: Human-Influenced Dynamic Window Approach for Shared Control of a Telepresence Robot
Figure 2 for HI-DWA: Human-Influenced Dynamic Window Approach for Shared Control of a Telepresence Robot
Figure 3 for HI-DWA: Human-Influenced Dynamic Window Approach for Shared Control of a Telepresence Robot
Figure 4 for HI-DWA: Human-Influenced Dynamic Window Approach for Shared Control of a Telepresence Robot
Viaarxiv icon

A Study of Preference and Comfort for Users Immersed in a Telepresence Robot

Add code
Bookmark button
Alert button
Mar 05, 2022
Adhi Widagdo, Markku Suomalainen, Basak Sakcak, Katherine J. Mimnaugh, Juho Kalliokoski, Alexis P. Chambers, Timo Ojala, Steven M. LaValle

Figure 1 for A Study of Preference and Comfort for Users Immersed in a Telepresence Robot
Figure 2 for A Study of Preference and Comfort for Users Immersed in a Telepresence Robot
Figure 3 for A Study of Preference and Comfort for Users Immersed in a Telepresence Robot
Figure 4 for A Study of Preference and Comfort for Users Immersed in a Telepresence Robot
Viaarxiv icon

Unwinding Rotations Improves User Comfort with Immersive Telepresence Robots

Add code
Bookmark button
Alert button
Jan 07, 2022
Markku Suomalainen, Basak Sakcak, Adhi Widagdo, Juho Kalliokoski, Katherine J. Mimnaugh, Alexis P. Chambers, Timo Ojala, Steven M. LaValle

Figure 1 for Unwinding Rotations Improves User Comfort with Immersive Telepresence Robots
Figure 2 for Unwinding Rotations Improves User Comfort with Immersive Telepresence Robots
Figure 3 for Unwinding Rotations Improves User Comfort with Immersive Telepresence Robots
Figure 4 for Unwinding Rotations Improves User Comfort with Immersive Telepresence Robots
Viaarxiv icon