Abstract:The evaluation and post-training of large language models (LLMs) rely on supervision, but strong supervision for difficult tasks is often unavailable, especially when evaluating frontier models. In such cases, models are demonstrated to exploit evaluations built on such imperfect supervision, leading to deceptive results. However, underutilized in LLM research, a wealth of mechanism design research focuses on game-theoretic incentive compatibility, i.e., eliciting honest and informative answers with weak supervision. Drawing from this literature, we introduce the peer prediction method for model evaluation and post-training. It rewards honest and informative answers over deceptive and uninformative ones, using a metric based on mutual predictability and without requiring ground truth labels. We demonstrate the method's effectiveness and resistance to deception, with both theoretical guarantees and empirical validation on models with up to 405B parameters. We show that training an 8B model with peer prediction-based reward recovers most of the drop in truthfulness due to prior malicious finetuning, even when the reward is produced by a 0.135B language model with no finetuning. On the evaluation front, in contrast to LLM-as-a-Judge which requires strong and trusted judges, we discover an inverse scaling property in peer prediction, where, surprisingly, resistance to deception is strengthened as the capability gap between the experts and participants widens, enabling reliable evaluation of strong models with weak supervision. In particular, LLM-as-a-Judge become worse than random guess when facing deceptive models 5-20x the judge's size, while peer prediction thrives when such gaps are large, including in cases with over 100x size difference.
Abstract:The training and deployment of large language models (LLMs) create a feedback loop with human users: models learn human beliefs from data, reinforce these beliefs with generated content, reabsorb the reinforced beliefs, and feed them back to users again and again. This dynamic resembles an echo chamber. We hypothesize that this feedback loop entrenches the existing values and beliefs of users, leading to a loss of diversity and potentially the lock-in of false beliefs. We formalize this hypothesis and test it empirically with agent-based LLM simulations and real-world GPT usage data. Analysis reveals sudden but sustained drops in diversity after the release of new GPT iterations, consistent with the hypothesized human-AI feedback loop. Code and data available at https://thelockinhypothesis.com