Abstract:In the context of labor shortages and rising costs, construction robots are regarded as the key to revolutionizing traditional construction methods and improving efficiency and quality in the construction industry. In order to ensure that construction robots can perform tasks efficiently and accurately in complex construction environments, traditional single-objective trajectory optimization methods are difficult to meet the complex requirements of the changing construction environment. Therefore, we propose a multi-objective trajectory optimization for the robotic arm used in the curtain wall installation. First, we design a robotic arm for curtain wall installation, integrating serial, parallel, and folding arm elements, while considering its physical properties and motion characteristics. In addition, this paper proposes an NSGA-III-FO algorithm (NSGA-III with Focused Operator, NSGA-III-FO) that incorporates a focus operator screening mechanism to accelerate the convergence of the algorithm towards the Pareto front, thereby effectively balancing the multi-objective constraints of construction robots. The proposed algorithm is tested against NSGA-III, MOEA/D, and MSOPS-II in ten consecutive trials on the DTLZ3 and WFG3 test functions, showing significantly better convergence efficiency than the other algorithms. Finally, we conduct two sets of experiments on the designed robotic arm platform, which confirm the efficiency and practicality of the NSGA-III-FO algorithm in solving multi-objective trajectory planning problems for curtain wall installation tasks.
Abstract:In the construction industry, traditional methods fail to meet the modern demands for efficiency and quality. The curtain wall installation is a critical component of construction projects. We design a hydraulically driven robotic arm for curtain wall installation and a dynamic parameter identification method. We establish a Denavit-Hartenberg (D-H) model based on measured robotic arm structural parameters and integrate hydraulic cylinder dynamics to construct a composite parametric system driven by a Stribeck friction model. By designing high-signal-to-noise ratio displacement excitation signals for hydraulic cylinders and combining Fourier series to construct optimal excitation trajectories that satisfy joint constraints, this method effectively excites the characteristics of each parameter in the minimal parameter set of the dynamic model of the robotic arm. On this basis, a hierarchical progressive parameter identification strategy is proposed: least squares estimation is employed to separately identify and jointly calibrate the dynamic parameters of both the hydraulic cylinder and the robotic arm, yielding Stribeck model curves for each joint. Experimental validation on a robotic arm platform demonstrates residual standard deviations below 0.4 Nm between theoretical and measured joint torques, confirming high-precision dynamic parameter identification for the hydraulic-driven curtain wall installation robotic arm. This significantly contributes to enhancing the intelligence level of curtain wall installation operations.
Abstract:Traditional point cloud registration (PCR) methods for feature matching often employ the nearest neighbor policy. This leads to many-to-one matches and numerous potential inliers without any corresponding point. Recently, some approaches have framed the feature matching task as an assignment problem to achieve optimal one-to-one matches. We argue that the transition to the Assignment problem is not reliable for general correspondence-based PCR. In this paper, we propose a heuristics stable matching policy called GS-matching, inspired by the Gale-Shapley algorithm. Compared to the other matching policies, our method can perform efficiently and find more non-repetitive inliers under low overlapping conditions. Furthermore, we employ the probability theory to analyze the feature matching task, providing new insights into this research problem. Extensive experiments validate the effectiveness of our matching policy, achieving better registration recall on multiple datasets.
Abstract:Partial to Partial Point Cloud Registration (partial PCR) remains a challenging task, particularly when dealing with a low overlap rate. In comparison to the full-to-full registration task, we find that the objective of partial PCR is still not well-defined, indicating no metric can reliably identify the true transformation. We identify this as the most fundamental challenge in partial PCR tasks. In this paper, instead of directly seeking the optimal transformation, we propose a novel and general Sight View Constraint (SVC) to conclusively identify incorrect transformations, thereby enhancing the robustness of existing PCR methods. Extensive experiments validate the effectiveness of SVC on both indoor and outdoor scenes. On the challenging 3DLoMatch dataset, our approach increases the registration recall from 78\% to 82\%, achieving the state-of-the-art result. This research also highlights the significance of the decision version problem of partial PCR, which has the potential to provide novel insights into the partial PCR problem.