Abstract:AI agents may soon become capable of autonomously completing valuable, long-horizon tasks in diverse domains. Current benchmarks either do not measure real-world tasks, or are not sufficiently difficult to meaningfully measure frontier models. To this end, we present Terminal-Bench 2.0: a carefully curated hard benchmark composed of 89 tasks in computer terminal environments inspired by problems from real workflows. Each task features a unique environment, human-written solution, and comprehensive tests for verification. We show that frontier models and agents score less than 65\% on the benchmark and conduct an error analysis to identify areas for model and agent improvement. We publish the dataset and evaluation harness to assist developers and researchers in future work at https://www.tbench.ai/ .
Abstract:Acquiring labelled training data remains a costly task in real world machine learning projects to meet quantity and quality requirements. Recently Large Language Models (LLMs), notably GPT-4, have shown great promises in labelling data with high accuracy. However, privacy and cost concerns prevent the ubiquitous use of GPT-4. In this work, we explore effectively leveraging open-source models for automatic labelling. We identify integrating label schema as a promising technology but found that naively using the label description for classification leads to poor performance on high cardinality tasks. To address this, we propose Retrieval Augmented Classification (RAC) for which LLM performs inferences for one label at a time using corresponding label schema; we start with the most related label and iterates until a label is chosen by the LLM. We show that our method, which dynamically integrates label description, leads to performance improvements in labelling tasks. We further show that by focusing only on the most promising labels, RAC can trade off between label quality and coverage - a property we leverage to automatically label our internal datasets.