Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Thomas Schlegl

Thomas Schlegl

Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab, Medical University Vienna, Austria, Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology and Optometry, Medical University Vienna, Austria

Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT


May 29, 2019
Philipp Seeböck, José Ignacio Orlando, Thomas Schlegl, Sebastian M. Waldstein, Hrvoje Bogunović, Sophie Klimscha, Georg Langs, Ursula Schmidt-Erfurth

* Accepted for publication in IEEE Transactions on Medical Imaging, 2019 

  Access Paper or Ask Questions

Unsupervised Identification of Disease Marker Candidates in Retinal OCT Imaging Data


Oct 31, 2018
Philipp Seeböck, Sebastian M. Waldstein, Sophie Klimscha, Hrvoje Bogunovic, Thomas Schlegl, Bianca S. Gerendas, René Donner, Ursula Schmidt-Erfurth, Georg Langs

* Accepted for publication in IEEE Transactions on Medical Imaging, 2018 

  Access Paper or Ask Questions

Fully Automated Segmentation of Hyperreflective Foci in Optical Coherence Tomography Images


May 08, 2018
Thomas Schlegl, Hrvoje Bogunovic, Sophie Klimscha, Philipp Seeböck, Amir Sadeghipour, Bianca Gerendas, Sebastian M. Waldstein, Georg Langs, Ursula Schmidt-Erfurth


  Access Paper or Ask Questions

Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery


Mar 17, 2017
Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Ursula Schmidt-Erfurth, Georg Langs

* To be published in the proceedings of the international conference on Information Processing in Medical Imaging (IPMI), 2017 

  Access Paper or Ask Questions

Identifying and Categorizing Anomalies in Retinal Imaging Data


Dec 02, 2016
Philipp Seeböck, Sebastian Waldstein, Sophie Klimscha, Bianca S. Gerendas, René Donner, Thomas Schlegl, Ursula Schmidt-Erfurth, Georg Langs

* Extended Abstract, Accepted for NIPS 2016 Workshop "Machine Learning for Health" 

  Access Paper or Ask Questions