Abstract:Responsible AI (rAI) guidance increasingly promotes stakeholder involvement (SHI) during AI development. At the same time, SHI is already common in commercial software development, but with potentially different foci. This study clarifies the extent to which established SHI practices are able to contribute to rAI efforts as well as potential disconnects -- essential insights to inform and tailor future interventions that further shift industry practice towards rAI efforts. First, we analysed 56 rAI guidance documents to identify why SHI is recommended (i.e. its expected benefits for rAI) and uncovered goals such as redistributing power, improving socio-technical understandings, anticipating risks, and enhancing public oversight. To understand why and how SHI is currently practised in commercial settings, we then conducted an online survey (n=130) and semi-structured interviews (n=10) with AI practitioners. Our findings reveal that SHI in practice is primarily driven by commercial priorities (e.g. customer value, compliance) and several factors currently discourage more rAI-aligned SHI practices. This suggests that established SHI practices are largely not contributing to rAI efforts. To address this disconnect, we propose interventions and research opportunities to advance rAI development in practice.
Abstract:In decision-making problems, the outcome of an intervention often depends on the causal relationships between system components and is highly costly to evaluate. In such settings, causal Bayesian optimization (CBO) can exploit the causal relationships between the system variables and sequentially perform interventions to approach the optimum with minimal data. Extending CBO to the multi-outcome setting, we propose Multi-Objective Causal Bayesian Optimization (MO-CBO), a paradigm for identifying Pareto-optimal interventions within a known multi-target causal graph. We first derive a graphical characterization for potentially optimal sets of variables to intervene upon. Showing that any MO-CBO problem can be decomposed into several traditional multi-objective optimization tasks, we then introduce an algorithm that sequentially balances exploration across these tasks using relative hypervolume improvement. The proposed method will be validated on both synthetic and real-world causal graphs, demonstrating its superiority over traditional (non-causal) multi-objective Bayesian optimization in settings where causal information is available.
Abstract:Implicit Neural Representations (INRs) approximate discrete data through continuous functions and are commonly used for encoding 2D images. Traditional image-based INRs employ neural networks to map pixel coordinates to RGB values, capturing shapes, colors, and textures within the network's weights. Recently, GaussianImage has been proposed as an alternative, using Gaussian functions instead of neural networks to achieve comparable quality and compression. Such a solution obtains a quality and compression ratio similar to classical INR models but does not allow image modification. In contrast, our work introduces a novel method, MiraGe, which uses mirror reflections to perceive 2D images in 3D space and employs flat-controlled Gaussians for precise 2D image editing. Our approach improves the rendering quality and allows realistic image modifications, including human-inspired perception of photos in the 3D world. Thanks to modeling images in 3D space, we obtain the illusion of 3D-based modification in 2D images. We also show that our Gaussian representation can be easily combined with a physics engine to produce physics-based modification of 2D images. Consequently, MiraGe allows for better quality than the standard approach and natural modification of 2D images.