Abstract:We study parameter-efficient image-to-video probing for the unaddressed challenge of recognizing nearly symmetric actions - visually similar actions that unfold in opposite temporal order (e.g., opening vs. closing a bottle). Existing probing mechanisms for image-pretrained models, such as DinoV2 and CLIP, rely on attention mechanism for temporal modeling but are inherently permutation-invariant, leading to identical predictions regardless of frame order. To address this, we introduce Self-attentive Temporal Embedding Probing (STEP), a simple yet effective approach designed to enforce temporal sensitivity in parameter-efficient image-to-video transfer. STEP enhances self-attentive probing with three key modifications: (1) a learnable frame-wise positional encoding, explicitly encoding temporal order; (2) a single global CLS token, for sequence coherence; and (3) a simplified attention mechanism to improve parameter efficiency. STEP outperforms existing image-to-video probing mechanisms by 3-15% across four activity recognition benchmarks with only 1/3 of the learnable parameters. On two datasets, it surpasses all published methods, including fully fine-tuned models. STEP shows a distinct advantage in recognizing nearly symmetric actions, surpassing other probing mechanisms by 9-19%. and parameter-heavier PEFT-based transfer methods by 5-15%. Code and models will be made publicly available.
Abstract:Foundation models (FMs) are large neural networks trained on broad datasets, excelling in downstream tasks with minimal fine-tuning. Human activity recognition in video has advanced with FMs, driven by competition among different architectures. However, high accuracies on standard benchmarks can draw an artificially rosy picture, as they often overlook real-world factors like changing camera perspectives. Popular benchmarks, mostly from YouTube or movies, offer diverse views but only coarse actions, which are insufficient for use-cases needing fine-grained, domain-specific actions. Domain-specific datasets (e.g., for industrial assembly) typically use data from limited static perspectives. This paper empirically evaluates how perspective changes affect different FMs in fine-grained human activity recognition. We compare multiple backbone architectures and design choices, including image- and video- based models, and various strategies for temporal information fusion, including commonly used score averaging and more novel attention-based temporal aggregation mechanisms. This is the first systematic study of different foundation models and specific design choices for human activity recognition from unknown views, conducted with the goal to provide guidance for backbone- and temporal- fusion scheme selection. Code and models will be made publicly available to the community.