Cornell University, New York, USA
Abstract:The human-robot interaction (HRI) field has recognized the importance of enabling robots to interact with teams. Human teams rely on effective communication for successful collaboration in time-sensitive environments. Robots can play a role in enhancing team coordination through real-time assistance. Despite significant progress in human-robot teaming research, there remains an essential gap in how robots can effectively communicate with action teams using multimodal interaction cues in time-sensitive environments. This study addresses this knowledge gap in an experimental in-lab study to investigate how multimodal robot communication in action teams affects workload and human perception of robots. We explore team collaboration in a medical training scenario where a robotic crash cart (RCC) provides verbal and non-verbal cues to help users remember to perform iterative tasks and search for supplies. Our findings show that verbal cues for object search tasks and visual cues for task reminders reduce team workload and increase perceived ease of use and perceived usefulness more effectively than a robot with no feedback. Our work contributes to multimodal interaction research in the HRI field, highlighting the need for more human-robot teaming research to understand best practices for integrating collaborative robots in time-sensitive environments such as in hospitals, search and rescue, and manufacturing applications.
Abstract:Healthcare workers (HCWs) encounter challenges in hospitals, such as retrieving medical supplies quickly from crash carts, which could potentially result in medical errors and delays in patient care. Robotic crash carts (RCCs) have shown promise in assisting healthcare teams during medical tasks through guided object searches and task reminders. Limited exploration has been done to determine what communication modalities are most effective and least disruptive to patient care in real-world settings. To address this gap, we conducted a between-subjects experiment comparing the RCC's verbal and non-verbal communication of object search with a standard crash cart in resuscitation scenarios to understand the impact of robot communication on workload and attitudes toward using robots in the workplace. Our findings indicate that verbal communication significantly reduced mental demand and effort compared to visual cues and with a traditional crash cart. Although frustration levels were slightly higher during collaborations with the robot compared to a traditional cart, these research insights provide valuable implications for human-robot teamwork in high-stakes environments.
Abstract:Designing robots to support high-stakes teamwork in emergency settings presents unique challenges, including seamless integration into fast-paced environments, facilitating effective communication among team members, and adapting to rapidly changing situations. While teleoperated robots have been successfully used in high-stakes domains such as firefighting and space exploration, autonomous robots that aid highs-takes teamwork remain underexplored. To address this gap, we conducted a rapid prototyping process to develop a series of seemingly autonomous robot designed to assist clinical teams in the Emergency Room. We transformed a standard crash cart--which stores medical equipment and emergency supplies into a medical robotic crash cart (MCCR). The MCCR was evaluated through field deployments to assess its impact on team workload and usability, identified taxonomies of failure, and refined the MCCR in collaboration with healthcare professionals. Our work advances the understanding of robot design for high-stakes, time-sensitive settings, providing insights into useful MCCR capabilities and considerations for effective human-robot collaboration. By publicly disseminating our MCCR tutorial, we hope to encourage HRI researchers to explore the design of robots for high-stakes teamwork.
Abstract:How might healthcare workers (HCWs) leverage augmented reality head-mounted displays (AR-HMDs) to enhance teamwork? Although AR-HMDs have shown immense promise in supporting teamwork in healthcare settings, design for Emergency Department (ER) teams has received little attention. The ER presents unique challenges, including procedural recall, medical errors, and communication gaps. To address this gap, we engaged in a participatory design study with healthcare workers to gain a deep understanding of the potential for AR-HMDs to facilitate teamwork during ER procedures. Our results reveal that AR-HMDs can be used as an information-sharing and information-retrieval system to bridge knowledge gaps, and concerns about integrating AR-HMDs in ER workflows. We contribute design recommendations for seven role-based AR-HMD application scenarios involving HCWs with various expertise, working across multiple medical tasks. We hope our research inspires designers to embark on the development of new AR-HMD applications for high-stakes, team environments.