Abstract:As large language models (LLMs) continue to advance, reliable evaluation methods are essential particularly for open-ended, instruction-following tasks. LLM-as-a-Judge enables automatic evaluation using LLMs as evaluators, but its reliability remains uncertain. In this work, we analyze key factors affecting its trustworthiness, focusing on alignment with human judgments and evaluation consistency. Using BIGGENBench and EvalBiasBench, we study the effects of evaluation design, decoding strategies, and Chain-of-Tought (CoT) reasoning in evaluation. Our results show that evaluation criteria are critical for reliability, non-deterministic sampling improves alignment with human preferences over deterministic evaluation, and CoT reasoning offers minimal gains when clear evaluation criteria are present.
Abstract:Large Language Models (LLMs) have demonstrated exceptional performance across a wide range of tasks. To further tailor LLMs to specific domains or applications, post-training techniques such as Supervised Fine-Tuning (SFT), Preference Learning, and model merging are commonly employed. While each of these methods has been extensively studied in isolation, the automated construction of complete post-training pipelines remains an underexplored area. Existing approaches typically rely on manual design or focus narrowly on optimizing individual components, such as data ordering or merging strategies. In this work, we introduce LaMDAgent (short for Language Model Developing Agent), a novel framework that autonomously constructs and optimizes full post-training pipelines through the use of LLM-based agents. LaMDAgent systematically explores diverse model generation techniques, datasets, and hyperparameter configurations, leveraging task-based feedback to discover high-performing pipelines with minimal human intervention. Our experiments show that LaMDAgent improves tool-use accuracy by 9.0 points while preserving instruction-following capabilities. Moreover, it uncovers effective post-training strategies that are often overlooked by conventional human-driven exploration. We further analyze the impact of data and model size scaling to reduce computational costs on the exploration, finding that model size scalings introduces new challenges, whereas scaling data size enables cost-effective pipeline discovery.
Abstract:Large Language Models (LLMs) have demonstrated significant improvements in reasoning capabilities through supervised fine-tuning and reinforcement learning. However, when training reasoning models, these approaches are primarily applicable to specific domains such as mathematics and programming, which imposes fundamental constraints on the breadth and scalability of training data. In contrast, continual pretraining (CPT) offers the advantage of not requiring task-specific signals. Nevertheless, how to effectively synthesize training data for reasoning and how such data affect a wide range of domains remain largely unexplored. This study provides a detailed evaluation of Reasoning CPT, a form of CPT that uses synthetic data to reconstruct the hidden thought processes underlying texts, based on the premise that texts are the result of the author's thinking process. Specifically, we apply Reasoning CPT to Gemma2-9B using synthetic data with hidden thoughts derived from STEM and Law corpora, and compare it to standard CPT on the MMLU benchmark. Our analysis reveals that Reasoning CPT consistently improves performance across all evaluated domains. Notably, reasoning skills acquired in one domain transfer effectively to others; the performance gap with conventional methods widens as problem difficulty increases, with gains of up to 8 points on the most challenging problems. Furthermore, models trained with hidden thoughts learn to adjust the depth of their reasoning according to problem difficulty.
Abstract:Accurately forecasting the performance of Large Language Models (LLMs) before extensive fine-tuning or merging can substantially reduce both computational expense and development time. Although prior approaches like scaling laws account for global factors such as parameter size or training tokens, they often overlook explicit lineage relationships - i.e., which models are derived or merged from which parents. In this work, we propose a novel Lineage-Regularized Matrix Factorization (LRMF) framework that encodes ancestral ties among LLMs via a graph Laplacian regularizer. By leveraging multi-hop parent-child connections, LRMF consistently outperforms conventional matrix factorization and collaborative filtering methods in both instance-level and benchmark-level performance prediction. Our large-scale study includes 2,934 publicly available Hugging Face models and 21,000+ instances across 6 major benchmarks, showing that lineage constraints yield up to 7-10 percentage points higher correlation with actual performance compared to baselines. Moreover, LRMF effectively addresses the cold-start problem, providing accurate estimates for newly derived or merged models even with minimal data. This lineage-guided strategy thus offers a resource-efficient way to inform hyperparameter tuning, data selection, and model combination in modern LLM development.
Abstract:Large Language Models (LLMs) have shown remarkable performance improvements and are rapidly gaining adoption in industry. However, the methods for improving LLMs are still designed by humans, which restricts the invention of new model-improving algorithms to human expertise and imagination. To address this, we propose the Self-Developing framework, which enables LLMs to autonomously generate and learn model-improvement algorithms. In this framework, the seed model generates, applies, and evaluates model-improving algorithms, continuously improving both the seed model and the algorithms themselves. In mathematical reasoning tasks, Self-Developing not only creates models that surpass the seed model but also consistently outperforms models created using human-designed algorithms. Additionally, these LLM-discovered algorithms demonstrate strong effectiveness, including transferability to out-of-domain models.