Abstract:False discovery rate (FDR) control methods are essential for voxel-wise multiple testing in neuroimaging data analysis, where hundreds of thousands or even millions of tests are conducted to detect brain regions associated with disease-related changes. Classical FDR control methods (e.g., BH, q-value, and LocalFDR) assume independence among tests and often lead to high false non-discovery rates (FNR). Although various spatial FDR control methods have been developed to improve power, they still fall short of jointly addressing three major challenges in neuroimaging applications: capturing complex spatial dependencies, maintaining low variability in both false discovery proportion (FDP) and false non-discovery proportion (FNP) across replications, and achieving computational scalability for high-resolution data. To address these challenges, we propose fcHMRF-LIS, a powerful, stable, and scalable spatial FDR control method for voxel-wise multiple testing. It integrates the local index of significance (LIS)-based testing procedure with a novel fully connected hidden Markov random field (fcHMRF) designed to model complex spatial structures using a parsimonious parameterization. We develop an efficient expectation-maximization algorithm incorporating mean-field approximation, the Conditional Random Fields as Recurrent Neural Networks (CRF-RNN) technique, and permutohedral lattice filtering, reducing the time complexity from quadratic to linear in the number of tests. Extensive simulations demonstrate that fcHMRF-LIS achieves accurate FDR control, lower FNR, reduced variability in FDP and FNP, and a higher number of true positives compared to existing methods. Applied to an FDG-PET dataset from the Alzheimer's Disease Neuroimaging Initiative, fcHMRF-LIS identifies neurobiologically relevant brain regions and offers notable advantages in computational efficiency.
Abstract:Voxel-based multiple testing is widely used in neuroimaging data analysis. Traditional false discovery rate (FDR) control methods often ignore the spatial dependence among the voxel-based tests and thus suffer from substantial loss of testing power. While recent spatial FDR control methods have emerged, their validity and optimality remain questionable when handling the complex spatial dependencies of the brain. Concurrently, deep learning methods have revolutionized image segmentation, a task closely related to voxel-based multiple testing. In this paper, we propose DeepFDR, a novel spatial FDR control method that leverages unsupervised deep learning-based image segmentation to address the voxel-based multiple testing problem. Numerical studies, including comprehensive simulations and Alzheimer's disease FDG-PET image analysis, demonstrate DeepFDR's superiority over existing methods. DeepFDR not only excels in FDR control and effectively diminishes the false nondiscovery rate, but also boasts exceptional computational efficiency highly suited for tackling large-scale neuroimaging data.
Abstract:Computational Pathology (CoPath) is an interdisciplinary science that augments developments of computational approaches to analyze and model medical histopathology images. The main objective for CoPath is to develop infrastructure and workflows of digital diagnostics as an assistive CAD system for clinical pathology facilitating transformational changes in the diagnosis and treatment of cancer diseases. With evergrowing developments in deep learning and computer vision algorithms, and the ease of the data flow from digital pathology, currently CoPath is witnessing a paradigm shift. Despite the sheer volume of engineering and scientific works being introduced for cancer image analysis, there is still a considerable gap of adopting and integrating these algorithms in clinical practice. This raises a significant question regarding the direction and trends that are undertaken in CoPath. In this article we provide a comprehensive review of more than 700 papers to address the challenges faced in problem design all-the-way to the application and implementation viewpoints. We have catalogued each paper into a model-card by examining the key works and challenges faced to layout the current landscape in CoPath. We hope this helps the community to locate relevant works and facilitate understanding of the field's future directions. In a nutshell, we oversee the CoPath developments in cycle of stages which are required to be cohesively linked together to address the challenges associated with such multidisciplinary science. We overview this cycle from different perspectives of data-centric, model-centric, and application-centric problems. We finally sketch remaining challenges and provide directions for future technical developments and clinical integration of CoPath.