Abstract:We consider manipulation problems in constrained and cluttered settings, which require several regrasps at unknown locations. We propose to inform an optimization-based task and motion planning (TAMP) solver with possible regrasp areas and grasp sequences to speed up the search. Our main idea is to use a state space abstraction, a regrasp map, capturing the combinations of available grasps in different parts of the configuration space, and allowing us to provide the solver with guesses for the mode switches and additional constraints for the object placements. By interleaving the creation of regrasp maps, their adaptation based on failed refinements, and solving TAMP (sub)problems, we are able to provide a robust search method for challenging regrasp manipulation problems.
Abstract:We consider a set of challenging sequential manipulation puzzles, where an agent has to interact with multiple movable objects and navigate narrow passages. Such settings are notoriously difficult for Task-and-Motion Planners, as they require interdependent regrasps and solving hard motion planning problems. In this paper, we propose to search over sequences of easier pick-and-place subproblems, which can lead to the solution of the manipulation puzzle. Our method combines a heuristic-driven forward search of subproblems with an optimization-based Task-and-Motion Planning solver. To guide the search, we introduce heuristics to generate and prioritize useful subgoals. We evaluate our approach on various manually designed and automatically generated scenes, demonstrating the benefits of auxiliary subproblems in sequential manipulation planning.