Abstract:Multiple Unmanned Aerial Vehicles (UAVs) cooperative Mobile Edge Computing (MEC) systems face critical challenges in coordinating trajectory planning, task offloading, and resource allocation while ensuring Quality of Service (QoS) under dynamic and uncertain environments. Existing approaches suffer from limited scalability, slow convergence, and inefficient knowledge sharing among UAVs, particularly when handling large-scale IoT device deployments with stringent deadline constraints. This paper proposes AirFed, a novel federated graph-enhanced multi-agent reinforcement learning framework that addresses these challenges through three key innovations. First, we design dual-layer dynamic Graph Attention Networks (GATs) that explicitly model spatial-temporal dependencies among UAVs and IoT devices, capturing both service relationships and collaborative interactions within the network topology. Second, we develop a dual-Actor single-Critic architecture that jointly optimizes continuous trajectory control and discrete task offloading decisions. Third, we propose a reputation-based decentralized federated learning mechanism with gradient-sensitive adaptive quantization, enabling efficient and robust knowledge sharing across heterogeneous UAVs. Extensive experiments demonstrate that AirFed achieves 42.9% reduction in weighted cost compared to state-of-the-art baselines, attains over 99% deadline satisfaction and 94.2% IoT device coverage rate, and reduces communication overhead by 54.5%. Scalability analysis confirms robust performance across varying UAV numbers, IoT device densities, and system scales, validating AirFed's practical applicability for large-scale UAV-MEC deployments.
Abstract:Autonomous navigation by drones using onboard sensors combined with machine learning and computer vision algorithms is impacting a number of domains, including agriculture, logistics, and disaster management. In this paper, we examine the use of drones for assisting visually impaired people (VIPs) in navigating through outdoor urban environments. Specifically, we present a perception-based path planning system for local planning around the neighborhood of the VIP, integrated with a global planner based on GPS and maps for coarse planning. We represent the problem using a geometric formulation and propose a multi DNN based framework for obstacle avoidance of the UAV as well as the VIP. Our evaluations conducted on a drone human system in a university campus environment verifies the feasibility of our algorithms in three scenarios; when the VIP walks on a footpath, near parked vehicles, and in a crowded street.
Abstract:Autonomous navigation by drones using onboard sensors, combined with deep learning and computer vision algorithms, is impacting a number of domains. We examine the use of drones to autonomously assist Visually Impaired People (VIPs) in navigating outdoor environments while avoiding obstacles. Here, we present NOVA, a robust calibration technique using depth maps to estimate absolute distances to obstacles in a campus environment. NOVA uses a dynamic-update method that can adapt to adversarial scenarios. We compare NOVA with SOTA depth map approaches, and with geometric and regression-based baseline models, for distance estimation to VIPs and other obstacles in diverse and dynamic conditions. We also provide exhaustive evaluations to validate the robustness and generalizability of our methods. NOVA predicts distances to VIP with an error <30cm and to different obstacles like cars and bicycles with a maximum of 60cm error, which are better than the baselines. NOVA also clearly out-performs SOTA depth map methods, by upto 5.3-14.6x.