Abstract:This paper presents a methodology to predict metric depth from monocular RGB images and an inertial measurement unit (IMU). To enable collision avoidance during autonomous flight, prior works either leverage heavy sensors (e.g., LiDARs or stereo cameras) or data-intensive and domain-specific fine-tuning of monocular metric depth estimation methods. In contrast, we propose several lightweight zero-shot rescaling strategies to obtain metric depth from relative depth estimates via the sparse 3D feature map created using a visual-inertial navigation system. These strategies are compared for their accuracy in diverse simulation environments. The best performing approach, which leverages monotonic spline fitting, is deployed in the real-world on a compute-constrained quadrotor. We obtain on-board metric depth estimates at 15 Hz and demonstrate successful collision avoidance after integrating the proposed method with a motion primitives-based planner.
Abstract:In traditional reinforcement learning, an agent maximizes the reward collected during its interaction with the environment by approximating the optimal policy through the estimation of value functions. Typically, given a state s and action a, the corresponding value is the expected discounted sum of rewards. The optimal action is then chosen to be the action a with the largest value estimated by value function. However, recent developments have shown both theoretical and experimental evidence of superior performance when value function is replaced with value distribution in context of deep Q learning [1]. In this paper, we develop a new algorithm that combines advantage actor-critic with value distribution estimated by quantile regression. We evaluated this new algorithm, termed Distributional Advantage Actor-Critic (DA2C or QR-A2C) on a variety of tasks, and observed it to achieve at least as good as baseline algorithms, and outperforming baseline in some tasks with smaller variance and increased stability.