Abstract:The retinal vasculature provides important clues in the diagnosis and monitoring of systemic diseases including hypertension and diabetes. The microvascular system is of primary involvement in such conditions, and the retina is the only anatomical site where the microvasculature can be directly observed. The objective assessment of retinal vessels has long been considered a surrogate biomarker for systemic vascular diseases, and with recent advancements in retinal imaging and computer vision technologies, this topic has become the subject of renewed attention. In this paper, we present a novel dataset, dubbed RAVIR, for the semantic segmentation of Retinal Arteries and Veins in Infrared Reflectance (IR) imaging. It enables the creation of deep learning-based models that distinguish extracted vessel type without extensive post-processing. We propose a novel deep learning-based methodology, denoted as SegRAVIR, for the semantic segmentation of retinal arteries and veins and the quantitative measurement of the widths of segmented vessels. Our extensive experiments validate the effectiveness of SegRAVIR and demonstrate its superior performance in comparison to state-of-the-art models. Additionally, we propose a knowledge distillation framework for the domain adaptation of RAVIR pretrained networks on color images. We demonstrate that our pretraining procedure yields new state-of-the-art benchmarks on the DRIVE, STARE, and CHASE_DB1 datasets. Dataset link: https://ravirdataset.github.io/data/
Abstract:The reliable segmentation of retinal vasculature can provide the means to diagnose and monitor the progression of a variety of diseases affecting the blood vessel network, including diabetes and hypertension. We leverage the power of convolutional neural networks to devise a reliable and fully automated method that can accurately detect, segment, and analyze retinal vessels. In particular, we propose a novel, fully convolutional deep neural network with an encoder-decoder architecture that employs dilated spatial pyramid pooling with multiple dilation rates to recover the lost content in the encoder and add multiscale contextual information to the decoder. We also propose a simple yet effective way of quantifying and tracking the widths of retinal vessels through direct use of the segmentation predictions. Unlike previous deep-learning-based approaches to retinal vessel segmentation that mainly rely on patch-wise analysis, our proposed method leverages a whole-image approach during training and inference, resulting in more efficient training and faster inference through the access of global content in the image. We have tested our method on three publicly available datasets, and our state-of-the-art results on both the DRIVE and CHASE-DB1 datasets attest to the effectiveness of our approach.