Abstract:This paper introduces the ROS2 control and the Hardware Interface (HW) integration for the Fanuc CRX- robot family. It explains basic implementation details and communication protocols, and its integration with the Moveit2 motion planning library. We conducted a series of experiments to evaluate relevant performances in the robotics field. We tested the developed ros2_fanuc_interface for four relevant robotics cases: step response, trajectory tracking, collision avoidance integrated with Moveit2, and dynamic velocity scaling, respectively. Results show that, despite a non-negligible delay between command and feedback, the robot can track the defined path with negligible errors (if it complies with joint velocity limits), ensuring collision avoidance. Full code is open source and available at https://github.com/paolofrance/ros2_fanuc_interface.
Abstract:Nowadays, industries are showing a growing interest in human-robot collaboration, particularly for shared tasks. This requires intelligent strategies to plan a robot's motions, considering both task constraints and human-specific factors such as height and movement preferences. This work introduces a novel approach to generate personalized trajectories using Dynamic Movement Primitives (DMPs), enhanced with real-time velocity scaling based on human feedback. The method was rigorously tested in industrial-grade experiments, focusing on the collaborative transport of an engine cowl lip section. Comparative analysis between DMP-generated trajectories and a state-of-the-art motion planner (BiTRRT) highlights their adaptability combined with velocity scaling. Subjective user feedback further demonstrates a clear preference for DMP- based interactions. Objective evaluations, including physiological measurements from brain and skin activity, reinforce these findings, showcasing the advantages of DMPs in enhancing human-robot interaction and improving user experience.