Abstract:Coherently forecasting the behaviour of a target variable across both coarse and fine temporal scales is crucial for profit-optimized decision-making in several business applications, and remains an open research problem in temporal hierarchical forecasting. Here, we propose a new hierarchical architecture that tackles this problem by leveraging modules that specialize in forecasting the different temporal aggregation levels of interest. The architecture, which learns to encode the average behaviour of the target variable within its hidden layers, makes accurate and coherent forecasts across the target temporal hierarchies. We validate our architecture on the challenging, real-world M5 dataset and show that it outperforms established methods, such as the TSMixer model.
Abstract:Demand forecasting in the online fashion industry is particularly amendable to global, data-driven forecasting models because of the industry's set of particular challenges. These include the volume of data, the irregularity, the high amount of turn-over in the catalog and the fixed inventory assumption. While standard deep learning forecasting approaches cater for many of these, the fixed inventory assumption requires a special treatment via controlling the relationship between price and demand closely. In this case study, we describe the data and our modelling approach for this forecasting problem in detail and present empirical results that highlight the effectiveness of our approach.