Abstract:Emerging continual learning applications necessitate next-generation neural processing unit (NPU) platforms to support both training and inference operations. The promising Microscaling (MX) standard enables narrow bit-widths for inference and large dynamic ranges for training. However, existing MX multiply-accumulate (MAC) designs face a critical trade-off: integer accumulation requires expensive conversions from narrow floating-point products, while FP32 accumulation suffers from quantization losses and costly normalization. To address these limitations, we propose a hybrid precision-scalable reduction tree for MX MACs that combines the benefits of both approaches, enabling efficient mixed-precision accumulation with controlled accuracy relaxation. Moreover, we integrate an 8x8 array of these MACs into the state-of-the-art (SotA) NPU integration platform, SNAX, to provide efficient control and data transfer to our optimized precision-scalable MX datapath. We evaluate our design both on MAC and system level and compare it to the SotA. Our integrated system achieves an energy efficiency of 657, 1438-1675, and 4065 GOPS/W, respectively, for MXINT8, MXFP8/6, and MXFP4, with a throughput of 64, 256, and 512 GOPS.




Abstract:Autonomous robots require efficient on-device learning to adapt to new environments without cloud dependency. For this edge training, Microscaling (MX) data types offer a promising solution by combining integer and floating-point representations with shared exponents, reducing energy consumption while maintaining accuracy. However, the state-of-the-art continuous learning processor, namely Dacapo, faces limitations with its MXINT-only support and inefficient vector-based grouping during backpropagation. In this paper, we present, to the best of our knowledge, the first work that addresses these limitations with two key innovations: (1) a precision-scalable arithmetic unit that supports all six MX data types by exploiting sub-word parallelism and unified integer and floating-point processing; and (2) support for square shared exponent groups to enable efficient weight handling during backpropagation, removing storage redundancy and quantization overhead. We evaluate our design against Dacapo under iso-peak-throughput on four robotics workloads in TSMC 16nm FinFET technology at 500MHz, reaching a 25.6% area reduction, a 51% lower memory footprint, and 4x higher effective training throughput while achieving comparable energy-efficiency, enabling efficient robotics continual learning at the edge.