Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Authors:Sridhar Mahadevan

Figures and Tables:

Abstract:In this paper, we propose GAIA, a generative AI architecture based on category theory. GAIA is based on a hierarchical model where modules are organized as a simplicial complex. Each simplicial complex updates its internal parameters biased on information it receives from its superior simplices and in turn relays updates to its subordinate sub-simplices. Parameter updates are formulated in terms of lifting diagrams over simplicial sets, where inner and outer horn extensions correspond to different types of learning problems. Backpropagation is modeled as an endofunctor over the category of parameters, leading to a coalgebraic formulation of deep learning.

Via

Abstract:Large language models (LLMs) have brought about significant transformations in human society. Among the crucial computations in LLMs, the softmax unit holds great importance. Its helps the model generating a probability distribution on potential subsequent words or phrases, considering a series of input words. By utilizing this distribution, the model selects the most probable next word or phrase, based on the assigned probabilities. The softmax unit assumes a vital function in LLM training as it facilitates learning from data through the adjustment of neural network weights and biases. With the development of the size of LLMs, computing the gradient becomes expensive. However, Zero-th Order method can approximately compute the gradient with only forward passes. In this paper, we present a Zero-th Order algorithm specifically tailored for Softmax optimization. We demonstrate the convergence of our algorithm, highlighting its effectiveness in efficiently computing gradients for large-scale LLMs. By leveraging the Zeroth-Order method, our work contributes to the advancement of optimization techniques in the context of complex language models.

Via

Abstract:Large language models (LLMs) have shown their power in different areas. Attention computation, as an important subroutine of LLMs, has also attracted interests in theory. Recently the static computation and dynamic maintenance of attention matrix has been studied by [Alman and Song 2023] and [Brand, Song and Zhou 2023] from both algorithmic perspective and hardness perspective. In this work, we consider the sparsification of the attention problem. We make one simplification which is the logit matrix is symmetric. Let $n$ denote the length of sentence, let $d$ denote the embedding dimension. Given a matrix $X \in \mathbb{R}^{n \times d}$, suppose $d \gg n$ and $\| X X^\top \|_{\infty} < r$ with $r \in (0,0.1)$, then we aim for finding $Y \in \mathbb{R}^{n \times m}$ (where $m\ll d$) such that \begin{align*} \| D(Y)^{-1} \exp( Y Y^\top ) - D(X)^{-1} \exp( X X^\top) \|_{\infty} \leq O(r) \end{align*} We provide two results for this problem. $\bullet$ Our first result is a randomized algorithm. It runs in $\widetilde{O}(\mathrm{nnz}(X) + n^{\omega} ) $ time, has $1-\delta$ succeed probability, and chooses $m = O(n \log(n/\delta))$. Here $\mathrm{nnz}(X)$ denotes the number of non-zero entries in $X$. We use $\omega$ to denote the exponent of matrix multiplication. Currently $\omega \approx 2.373$. $\bullet$ Our second result is a deterministic algorithm. It runs in $\widetilde{O}(\min\{\sum_{i\in[d]}\mathrm{nnz}(X_i)^2, dn^{\omega-1}\} + n^{\omega+1})$ time and chooses $m = O(n)$. Here $X_i$ denote the $i$-th column of matrix $X$. Our main findings have the following implication for applied LLMs task: for any super large feature dimension, we can reduce it down to the size nearly linear in length of sentence.

Via

Abstract:Over the past few years, there has been a significant amount of research focused on studying the ReLU activation function, with the aim of achieving neural network convergence through over-parametrization. However, recent developments in the field of Large Language Models (LLMs) have sparked interest in the use of exponential activation functions, specifically in the attention mechanism. Mathematically, we define the neural function $F: \mathbb{R}^{d \times m} \times \mathbb{R}^d \rightarrow \mathbb{R}$ using an exponential activation function. Given a set of data points with labels $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\} \subset \mathbb{R}^d \times \mathbb{R}$ where $n$ denotes the number of the data. Here $F(W(t),x)$ can be expressed as $F(W(t),x) := \sum_{r=1}^m a_r \exp(\langle w_r, x \rangle)$, where $m$ represents the number of neurons, and $w_r(t)$ are weights at time $t$. It's standard in literature that $a_r$ are the fixed weights and it's never changed during the training. We initialize the weights $W(0) \in \mathbb{R}^{d \times m}$ with random Gaussian distributions, such that $w_r(0) \sim \mathcal{N}(0, I_d)$ and initialize $a_r$ from random sign distribution for each $r \in [m]$. Using the gradient descent algorithm, we can find a weight $W(T)$ such that $\| F(W(T), X) - y \|_2 \leq \epsilon$ holds with probability $1-\delta$, where $\epsilon \in (0,0.1)$ and $m = \Omega(n^{2+o(1)}\log(n/\delta))$. To optimize the over-parameterization bound $m$, we employ several tight analysis techniques from previous studies [Song and Yang arXiv 2019, Munteanu, Omlor, Song and Woodruff ICML 2022].

Via

Authors:Sridhar Mahadevan

Figures and Tables:

Abstract:We propose a layered hierarchical architecture called UCLA (Universal Causality Layered Architecture), which combines multiple levels of categorical abstraction for causal inference. At the top-most level, causal interventions are modeled combinatorially using a simplicial category of ordinal numbers. At the second layer, causal models are defined by a graph-type category. The non-random ``surgical" operations on causal structures, such as edge deletion, are captured using degeneracy and face operators from the simplicial layer above. The third categorical abstraction layer corresponds to the data layer in causal inference. The fourth homotopy layer comprises of additional structure imposed on the instance layer above, such as a topological space, which enables evaluating causal models on datasets. Functors map between every pair of layers in UCLA. Each functor between layers is characterized by a universal arrow, which defines an isomorphism between every pair of categorical layers. These universal arrows define universal elements and representations through the Yoneda Lemma, and in turn lead to a new category of elements based on a construction introduced by Grothendieck. Causal inference between each pair of layers is defined as a lifting problem, a commutative diagram whose objects are categories, and whose morphisms are functors that are characterized as different types of fibrations. We illustrate the UCLA architecture using a range of examples, including integer-valued multisets that represent a non-graphical framework for conditional independence, and causal models based on graphs and string diagrams using symmetric monoidal categories. We define causal effect in terms of the homotopy colimit of the nerve of the category of elements.

Via

Authors:Shiv Shankar, Ritwik Sinha, Saayan Mitra, Moumita Sinha, Viswanathan Swaminathan, Sridhar Mahadevan

Figures and Tables:

Abstract:Consider two brands that want to jointly test alternate web experiences for their customers with an A/B test. Such collaborative tests are today enabled using \textit{third-party cookies}, where each brand has information on the identity of visitors to another website. With the imminent elimination of third-party cookies, such A/B tests will become untenable. We propose a two-stage experimental design, where the two brands only need to agree on high-level aggregate parameters of the experiment to test the alternate experiences. Our design respects the privacy of customers. We propose an estimater of the Average Treatment Effect (ATE), show that it is unbiased and theoretically compute its variance. Our demonstration describes how a marketer for a brand can design such an experiment and analyze the results. On real and simulated data, we show that the approach provides valid estimate of the ATE with low variance and is robust to the proportion of visitors overlapping across the brands.

Via

Authors:Sridhar Mahadevan

Figures and Tables:

Abstract:We present a unified formalism for structure discovery of causal models and predictive state representation (PSR) models in reinforcement learning (RL) using higher-order category theory. Specifically, we model structure discovery in both settings using simplicial objects, contravariant functors from the category of ordinal numbers into any category. Fragments of causal models that are equivalent under conditional independence -- defined as causal horns -- as well as subsequences of potential tests in a predictive state representation -- defined as predictive horns -- are both special cases of horns of a simplicial object, subsets resulting from the removal of the interior and the face opposite a particular vertex. Latent structure discovery in both settings involve the same fundamental mathematical problem of finding extensions of horns of simplicial objects through solving lifting problems in commutative diagrams, and exploiting weak homotopies that define higher-order symmetries. Solutions to the problem of filling "inner" vs "outer" horns leads to various notions of higher-order categories, including weak Kan complexes and quasicategories. We define the abstract problem of structure discovery in both settings in terms of adjoint functors between the category of universal causal models or universal decision models and its simplicial object representation.

Via

Authors:Sridhar Mahadevan

Figures and Tables:

Abstract:Conditional independence has been widely used in AI, causal inference, machine learning, and statistics. We introduce categoroids, an algebraic structure for characterizing universal properties of conditional independence. Categoroids are defined as a hybrid of two categories: one encoding a preordered lattice structure defined by objects and arrows between them; the second dual parameterization involves trigonoidal objects and morphisms defining a conditional independence structure, with bridge morphisms providing the interface between the binary and ternary structures. We illustrate categoroids using three well-known examples of axiom sets: graphoids, integer-valued multisets, and separoids. Functoroids map one categoroid to another, preserving the relationships defined by all three types of arrows in the co-domain categoroid. We describe a natural transformation across functoroids, which is natural across regular objects and trigonoidal objects, to construct universal representations of conditional independence.. We use adjunctions and monads between categoroids to abstractly characterize faithfulness of graphical and non-graphical representations of conditional independence.

Via

Authors:Sridhar Mahadevan

Figures and Tables:

Abstract:We propose Universal Causality, an overarching framework based on category theory that defines the universal property that underlies causal inference independent of the underlying representational formalism used. More formally, universal causal models are defined as categories consisting of objects and morphisms between them representing causal influences, as well as structures for carrying out interventions (experiments) and evaluating their outcomes (observations). Functors map between categories, and natural transformations map between a pair of functors across the same two categories. Abstract causal diagrams in our framework are built using universal constructions from category theory, including the limit or co-limit of an abstract causal diagram, or more generally, the Kan extension. We present two foundational results in universal causal inference. The first result, called the Universal Causality Theorem (UCT), pertains to the universality of diagrams, which are viewed as functors mapping both objects and relationships from an indexing category of abstract causal diagrams to an actual causal model whose nodes are labeled by random variables, and edges represent functional or probabilistic relationships. UCT states that any causal inference can be represented in a canonical way as the co-limit of an abstract causal diagram of representable objects. UCT follows from a basic result in the theory of sheaves. The second result, the Causal Reproducing Property (CRP), states that any causal influence of a object X on another object Y is representable as a natural transformation between two abstract causal diagrams. CRP follows from the Yoneda Lemma, one of the deepest results in category theory. The CRP property is analogous to the reproducing property in Reproducing Kernel Hilbert Spaces that served as the foundation for kernel methods in machine learning.

Via

Figures and Tables:

Abstract:Smoothed online combinatorial optimization considers a learner who repeatedly chooses a combinatorial decision to minimize an unknown changing cost function with a penalty on switching decisions in consecutive rounds. We study smoothed online combinatorial optimization problems when an imperfect predictive model is available, where the model can forecast the future cost functions with uncertainty. We show that using predictions to plan for a finite time horizon leads to regret dependent on the total predictive uncertainty and an additional switching cost. This observation suggests choosing a suitable planning window to balance between uncertainty and switching cost, which leads to an online algorithm with guarantees on the upper and lower bounds of the cumulative regret. Lastly, we provide an iterative algorithm to approximately solve the planning problem in real-time. Empirically, our algorithm shows a significant improvement in cumulative regret compared to other baselines in synthetic online distributed streaming problems.

Via