Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Authors:Debabrota Basu, Sourav Chakraborty, Debarshi Chanda, Buddha Dev Das, Arijit Ghosh, Arnab Ray

Abstract:Testing whether a sample survey is a credible representation of the population is an important question to ensure the validity of any downstream research. While this problem, in general, does not have an efficient solution, one might take a task-based approach and aim to understand whether a certain data analysis tool, like linear regression, would yield similar answers both on the population and the sample survey. In this paper, we design an algorithm to test the credibility of a sample survey in terms of linear regression. In other words, we design an algorithm that can certify if a sample survey is good enough to guarantee the correctness of data analysis done using linear regression tools. Nowadays, one is naturally concerned about data privacy in surveys. Thus, we further test the credibility of surveys published in a differentially private manner. Specifically, we focus on Local Differential Privacy (LDP), which is a standard technique to ensure privacy in surveys where the survey participants might not trust the aggregator. We extend our algorithm to work even when the data analysis has been done using surveys with LDP. In the process, we also propose an algorithm that learns with high probability the guarantees a linear regression model on a survey published with LDP. Our algorithm also serves as a mechanism to learn linear regression models from data corrupted with noise coming from any subexponential distribution. We prove that it achieves the optimal estimation error bound for $\ell_1$ linear regression, which might be of broader interest. We prove the theoretical correctness of our algorithms while trying to reduce the sample complexity for both public and private surveys. We also numerically demonstrate the performance of our algorithms on real and synthetic datasets.

Via

Abstract:We study incentivized exploration for the multi-armed bandit (MAB) problem with non-stationary reward distributions, where players receive compensation for exploring arms other than the greedy choice and may provide biased feedback on the reward. We consider two different non-stationary environments: abruptly-changing and continuously-changing, and propose respective incentivized exploration algorithms. We show that the proposed algorithms achieve sublinear regret and compensation over time, thus effectively incentivizing exploration despite the nonstationarity and the biased or drifted feedback.

Via

Abstract:Public observation logic (POL) reasons about agent expectations and agent observations in various real world situations. The expectations of agents take shape based on certain protocols about the world around and they remove those possible scenarios where their expectations and observations do not match. This in turn influences the epistemic reasoning of these agents. In this work, we study the computational complexity of the satisfaction problems of various fragments of POL. In the process, we also highlight the inevitable link that these fragments have with the well-studied Public announcement logic.

Via

Figures and Tables:

Abstract:Public observation logic (POL) is a variant of dynamic epistemic logic to reason about agent expectations and agent observations. Agents have certain expectations, regarding the situation at hand, that are actuated by the relevant protocols, and they eliminate possible worlds in which their expectations do not match with their observations. In this work, we investigate the computational complexity of the model checking problem for POL and prove its PSPACE-completeness. We also study various syntactic fragments of POL. We exemplify the applicability of POL model checking in verifying different characteristics and features of an interactive system with respect to the distinct expectations and (matching) observations of the system. Finally, we provide a discussion on the implementation of the model checking algorithms.

Via

Abstract:We present two new results about exact learning by quantum computers. First, we show how to exactly learn a $k$-Fourier-sparse $n$-bit Boolean function from $O(k^{1.5}(\log k)^2)$ uniform quantum examples for that function. This improves over the bound of $\widetilde{\Theta}(kn)$ uniformly random \emph{classical} examples (Haviv and Regev, CCC'15). Second, we show that if a concept class $\mathcal{C}$ can be exactly learned using $Q$ quantum membership queries, then it can also be learned using $O\left(\frac{Q^2}{\log Q}\log|\mathcal{C}|\right)$ \emph{classical} membership queries. This improves the previous-best simulation result (Servedio and Gortler, SICOMP'04) by a $\log Q$-factor.

Via