Abstract:Understanding intraventricular hemodynamics requires compact and physically interpretable representations of the underlying flow structures, as characteristic flow patterns are closely associated with cardiovascular conditions and can support early detection of cardiac deterioration. Conventional visualization of velocity or pressure fields, however, provides limited insight into the coherent mechanisms driving these dynamics. Reduced-order modeling techniques, like Proper Orthogonal Decomposition (POD) and Autoencoder (AE) architectures, offer powerful alternatives to extract dominant flow features from complex datasets. This study systematically compares POD with several AE variants (Linear, Nonlinear, Convolutional, and Variational) using left ventricular flow fields obtained from computational fluid dynamics simulations. We show that, for a suitably chosen latent dimension, AEs produce modes that become nearly orthogonal and qualitatively resemble POD modes that capture a given percentage of kinetic energy. As the number of latent modes increases, AE modes progressively lose orthogonality, leading to linear dependence, spatial redundancy, and the appearance of repeated modes with substantial high-frequency content. This degradation reduces interpretability and introduces noise-like components into AE-based reduced-order models, potentially complicating their integration with physics-based formulations or neural-network surrogates. The extent of interpretability loss varies across the AEs, with nonlinear, convolutional, and variational models exhibiting distinct behaviors in orthogonality preservation and feature localization. Overall, the results indicate that AEs can reproduce POD-like coherent structures under specific latent-space configurations, while highlighting the need for careful mode selection to ensure physically meaningful representations of cardiac flow dynamics.
Abstract:Urban wind flow modeling and simulation play an important role in air quality assessment and sustainable city planning. A key challenge for modeling and simulation is handling the complex geometries of the urban landscape. Low order models are limited in capturing the effects of geometry, while high-fidelity Computational Fluid Dynamics (CFD) simulations are prohibitively expensive, especially across multiple geometries or wind conditions. Here, we propose a generative diffusion framework for synthesizing steady-state urban wind fields over unstructured meshes that requires only geometry information. The framework combines a hierarchical graph neural network with score-based diffusion modeling to generate accurate and diverse velocity fields without requiring temporal rollouts or dense measurements. Trained across multiple mesh slices and wind angles, the model generalizes to unseen geometries, recovers key flow structures such as wakes and recirculation zones, and offers uncertainty-aware predictions. Ablation studies confirm robustness to mesh variation and performance under different inference regimes. This work develops is the first step towards foundation models for the built environment that can help urban planners rapidly evaluate design decisions under densification and climate uncertainty.
Abstract:This work presents, to the best of the authors' knowledge, the first generalizable and fully data-driven adaptive framework designed to stabilize deep learning (DL) autoregressive forecasting models over long time horizons, with the goal of reducing the computational cost required in computational fluid dynamics (CFD) simulations.The proposed methodology alternates between two phases: (i) predicting the evolution of the flow field over a selected time interval using a trained DL model, and (ii) updating the model with newly generated CFD data when stability degrades, thus maintaining accurate long-term forecasting. This adaptive retraining strategy ensures robustness while avoiding the accumulation of predictive errors typical in autoregressive models. The framework is validated across three increasingly complex flow regimes, from laminar to turbulent, demonstrating from 30 \% to 95 \% reduction in computational cost without compromising physical consistency or accuracy. Its entirely data-driven nature makes it easily adaptable to a wide range of time-dependent simulation problems. The code implementing this methodology is available as open-source and it will be integrated into the upcoming release of the ModelFLOWs-app.
Abstract:Heart diseases constitute the main cause of international human defunction. According to the World Health Organization (WHO), approximately 18 million deaths happen each year due to precisely heart diseases. In particular, heart failures (HF) press the healthcare industry to develop systems for their early, rapid and effective prediction. In this work, an automatic system which analyses in real-time echocardiography video sequences is proposed for the challenging and more specific task of prediction of heart failure times. This system is based on a novel deep learning framework, and works in two stages. The first one transforms the data included in a database of echocardiography video sequences into a machine learning-compatible collection of annotated images which can be used in the training phase of any kind of machine learning-based framework, including a deep learning one. This initial stage includes the use of the Higher Order Dynamic Mode Decomposition (HODMD) algorithm for both data augmentation and feature extraction. The second stage is focused on building and training a Vision Transformer (ViT). Self-supervised learning (SSL) methods, which have been so far barely explored in the literature about heart failure prediction, are applied to effectively train the ViT from scratch, even with scarce databases of echocardiograms. The designed neural network analyses images from echocardiography sequences to estimate the time in which a heart failure will happen. The results obtained show the efficacy of the HODMD algorithm and the superiority of the proposed system with respect to several established ViT and Convolutional Neural Network (CNN) architectures.




Abstract:Accurate modeling of the complex dynamics of fluid flows is a fundamental challenge in computational physics and engineering. This study presents an innovative integration of High-Order Singular Value Decomposition (HOSVD) with Long Short-Term Memory (LSTM) architectures to address the complexities of reduced-order modeling (ROM) in fluid dynamics. HOSVD improves the dimensionality reduction process by preserving multidimensional structures, surpassing the limitations of Singular Value Decomposition (SVD). The methodology is tested across numerical and experimental data sets, including two- and three-dimensional (2D and 3D) cylinder wake flows, spanning both laminar and turbulent regimes. The emphasis is also on exploring how the depth and complexity of LSTM architectures contribute to improving predictive performance. Simpler architectures with a single dense layer effectively capture the periodic dynamics, demonstrating the network's ability to model non-linearities and chaotic dynamics. The addition of extra layers provides higher accuracy at minimal computational cost. These additional layers enable the network to expand its representational capacity, improving the prediction accuracy and reliability. The results demonstrate that HOSVD outperforms SVD in all tested scenarios, as evidenced by using different error metrics. Efficient mode truncation by HOSVD-based models enables the capture of complex temporal patterns, offering reliable predictions even in challenging, noise-influenced data sets. The findings underscore the adaptability and robustness of HOSVD-LSTM architectures, offering a scalable framework for modeling fluid dynamics.
Abstract:This article introduces a novel methodology that integrates singular value decomposition (SVD) with a shallow linear neural network for forecasting high resolution fluid mechanics data. The method, termed LC-SVD-DLinear, combines a low-cost variant of singular value decomposition (LC-SVD) with the DLinear architecture, which decomposes the input features-specifically, the temporal coefficients-into trend and seasonality components, enabling a shallow neural network to capture the non-linear dynamics of the temporal data. This methodology uses under-resolved data, which can either be input directly into the hybrid model or downsampled from high resolution using two distinct techniques provided by the methodology. Working with under-resolved cases helps reduce the overall computational cost. Additionally, we present a variant of the method, LC-HOSVD-DLinear, which combines a low-cost version of the high-order singular value decomposition (LC-HOSVD) algorithm with the DLinear network, designed for high-order data. These approaches have been validated using two datasets: first, a numerical simulation of three-dimensional flow past a circular cylinder at $Re = 220$; and second, an experimental dataset of turbulent flow passing a circular cylinder at $Re = 2600$. The combination of these datasets demonstrates the robustness of the method. The forecasting and reconstruction results are evaluated through various error metrics, including uncertainty quantification. The work developed in this article will be included in the next release of ModelFLOWs-app




Abstract:In the realm of cardiovascular medicine, medical imaging plays a crucial role in accurately classifying cardiac diseases and making precise diagnoses. However, the field faces significant challenges when integrating data science techniques, as a significant volume of images is required for these techniques. As a consequence, it is necessary to investigate different avenues to overcome this challenge. In this contribution, we offer an innovative tool to conquer this limitation. In particular, we delve into the application of a well recognized method known as the EigenFaces approach to classify cardiac diseases. This approach was originally motivated for efficiently representing pictures of faces using principal component analysis, which provides a set of eigenvectors (aka eigenfaces), explaining the variation between face images. As this approach proven to be efficient for face recognition, it motivated us to explore its efficiency on more complicated data bases. In particular, we integrate this approach, with convolutional neural networks (CNNs) to classify echocardiography images taken from mice in five distinct cardiac conditions (healthy, diabetic cardiomyopathy, myocardial infarction, obesity and TAC hypertension). Performing a preprocessing step inspired from the eigenfaces approach on the echocardiography datasets, yields sets of pod modes, which we will call eigenhearts. To demonstrate the proposed approach, we compare two testcases: (i) supplying the CNN with the original images directly, (ii) supplying the CNN with images projected into the obtained pod modes. The results show a substantial and noteworthy enhancement when employing SVD for pre-processing, with classification accuracy increasing by approximately 50%.




Abstract:In this work, a data-driven, modal decomposition method, the higher order dynamic mode decomposition (HODMD), is combined with a convolutional neural network (CNN) in order to improve the classification accuracy of several cardiac diseases using echocardiography images. The HODMD algorithm is used first as feature extraction technique for the echocardiography datasets, taken from both healthy mice and mice afflicted by different cardiac diseases (Diabetic Cardiomyopathy, Obesity, TAC Hypertrophy and Myocardial Infarction). A total number of 130 echocardiography datasets are used in this work. The dominant features related to each cardiac disease were identified and represented by the HODMD algorithm as a set of DMD modes, which then are used as the input to the CNN. In a way, the database dimension was augmented, hence HODMD has been used, for the first time to the authors knowledge, for data augmentation in the machine learning framework. Six sets of the original echocardiography databases were hold out to be used as unseen data to test the performance of the CNN. In order to demonstrate the efficiency of the HODMD technique, two testcases are studied: the CNN is first trained using the original echocardiography images only, and second training the CNN using a combination of the original images and the DMD modes. The classification performance of the designed trained CNN shows that combining the original images with the DMD modes improves the results in all the testcases, as it improves the accuracy by up to 22%. These results show the great potential of using the HODMD algorithm as a data augmentation technique.




Abstract:The proliferation of unmanned aerial vehicles (UAVs) in controlled airspace presents significant risks, including potential collisions, disruptions to air traffic, and security threats. Ensuring the safe and efficient operation of airspace, particularly in urban environments and near critical infrastructure, necessitates effective methods to intercept unauthorized or non-cooperative UAVs. This work addresses the critical need for robust, adaptive systems capable of managing such threats through the use of Reinforcement Learning (RL). We present a novel approach utilizing RL to train fixed-wing UAV pursuer agents for intercepting dynamic evader targets. Our methodology explores both model-based and model-free RL algorithms, specifically DreamerV3, Truncated Quantile Critics (TQC), and Soft Actor-Critic (SAC). The training and evaluation of these algorithms were conducted under diverse scenarios, including unseen evasion strategies and environmental perturbations. Our approach leverages high-fidelity flight dynamics simulations to create realistic training environments. This research underscores the importance of developing intelligent, adaptive control systems for UAV interception, significantly contributing to the advancement of secure and efficient airspace management. It demonstrates the potential of RL to train systems capable of autonomously achieving these critical tasks.
Abstract:Heart diseases are the main international cause of human defunction. According to the WHO, nearly 18 million people decease each year because of heart diseases. Also considering the increase of medical data, much pressure is put on the health industry to develop systems for early and accurate heart disease recognition. In this work, an automatic cardiac pathology recognition system based on a novel deep learning framework is proposed, which analyses in real-time echocardiography video sequences. The system works in two stages. The first one transforms the data included in a database of echocardiography sequences into a machine-learning-compatible collection of annotated images which can be used in the training stage of any kind of machine learning-based framework, and more specifically with deep learning. This includes the use of the Higher Order Dynamic Mode Decomposition (HODMD) algorithm, for the first time to the authors' knowledge, for both data augmentation and feature extraction in the medical field. The second stage is focused on building and training a Vision Transformer (ViT), barely explored in the related literature. The ViT is adapted for an effective training from scratch, even with small datasets. The designed neural network analyses images from an echocardiography sequence to predict the heart state. The results obtained show the superiority of the proposed system and the efficacy of the HODMD algorithm, even outperforming pretrained Convolutional Neural Networks (CNNs), which are so far the method of choice in the literature.