Abstract:Federal agencies and researchers increasingly use large language models to analyze and simulate public opinion. When AI mediates between the public and policymakers, accuracy across intersecting identities becomes consequential; inaccurate group-level estimates can mislead outreach, consultation, and policy design. While research examines intersectionality in LLM outputs, no study has compared these outputs against real human responses across intersecting identities. Climate policy is one such domain, and this is particularly urgent for climate change, where opinion is contested and diverse. We investigate how LLMs represent intersectional patterns in U.S. climate opinions. We prompted six LLMs with profiles of 978 respondents from a nationally representative U.S. climate opinion survey and compared AI-generated responses to actual human answers across 20 questions. We find that LLMs appear to compress the diversity of American climate opinions, predicting less-concerned groups as more concerned and vice versa. This compression is intersectional: LLMs apply uniform gender assumptions that match reality for White and Hispanic Americans but misrepresent Black Americans, where actual gender patterns differ. These patterns, which may be invisible to standard auditing approaches, could undermine equitable climate governance.




Abstract:Homelessness in the United States has surged to levels unseen since the Great Depression. However, existing methods for monitoring it, such as point-in-time (PIT) counts, have limitations in terms of frequency, consistency, and spatial detail. This study proposes a new approach using publicly available, crowdsourced data, specifically 311 Service Calls and street-level imagery, to track and forecast homeless tent trends in San Francisco. Our predictive model captures fine-grained daily and neighborhood-level variations, uncovering patterns that traditional counts often overlook, such as rapid fluctuations during the COVID-19 pandemic and spatial shifts in tent locations over time. By providing more timely, localized, and cost-effective information, this approach serves as a valuable tool for guiding policy responses and evaluating interventions aimed at reducing unsheltered homelessness.
Abstract:Nuclear waste management requires rigorous regulatory compliance assessment, demanding advanced decision-support systems capable of addressing complex legal, environmental, and safety considerations. This paper presents a multi-agent Retrieval-Augmented Generation (RAG) system that integrates large language models (LLMs) with document retrieval mechanisms to enhance decision accuracy through structured agent collaboration. Through a structured 10-round discussion model, agents collaborate to assess regulatory compliance and safety requirements while maintaining document-grounded responses. Implemented on consumer-grade hardware, the system leverages Llama 3.2 and mxbai-embed-large-v1 embeddings for efficient retrieval and semantic representation. A case study of a proposed temporary nuclear waste storage site near Winslow, Arizona, demonstrates the framework's effectiveness. Results show the Regulatory Agent achieves consistently higher relevance scores in maintaining alignment with legal frameworks, while the Safety Agent effectively manages complex risk assessments requiring multifaceted analysis. The system demonstrates progressive improvement in agreement rates between agents across discussion rounds while semantic drift decreases, indicating enhanced decision-making consistency and response coherence. The system ensures regulatory decisions remain factually grounded, dynamically adapting to evolving regulatory frameworks through real-time document retrieval. By balancing automated assessment with human oversight, this framework offers a scalable and transparent approach to regulatory governance. These findings underscore the potential of AI-driven, multi-agent systems in advancing evidence-based, accountable, and adaptive decision-making for high-stakes environmental management scenarios.