Abstract:Bayesian Optimization with multi-objective acquisition functions such as q-Expected Hypervolume Improvement (qEHVI) requires efficient candidate optimization to maximize acquisition function values. Traditional approaches rely on continuous optimization methods like Sequential Least Squares Programming (SLSQP) for candidate selection. However, these gradient-based methods can become trapped in local optima, particularly in complex or high-dimensional objective landscapes. This paper presents a simulated annealing-based approach for candidate optimization in batch acquisition functions as an alternative to conventional continuous optimization methods. We evaluate our simulated annealing approach against SLSQP across four benchmark multi-objective optimization problems: ZDT1 (30D, 2 objectives), DTLZ2 (7D, 3 objectives), Kursawe (3D, 2 objectives), and Latent-Aware (4D, 2 objectives). Our results demonstrate that simulated annealing consistently achieves superior hypervolume performance compared to SLSQP in most test functions. The improvement is particularly pronounced for DTLZ2 and Latent-Aware problems, where simulated annealing reaches significantly higher hypervolume values and maintains better convergence characteristics. The histogram analysis of objective space coverage further reveals that simulated annealing explores more diverse and optimal regions of the Pareto front. These findings suggest that metaheuristic optimization approaches like simulated annealing can provide more robust and effective candidate optimization for multi-objective Bayesian optimization, offering a promising alternative to traditional gradient-based methods for batch acquisition function optimization.
Abstract:The accelerating pace and expanding scope of materials discovery demand optimization frameworks that efficiently navigate vast, nonlinear design spaces while judiciously allocating limited evaluation resources. We present a cost-aware, batch Bayesian optimization scheme powered by deep Gaussian process (DGP) surrogates and a heterotopic querying strategy. Our DGP surrogate, formed by stacking GP layers, models complex hierarchical relationships among high-dimensional compositional features and captures correlations across multiple target properties, propagating uncertainty through successive layers. We integrate evaluation cost into an upper-confidence-bound acquisition extension, which, together with heterotopic querying, proposes small batches of candidates in parallel, balancing exploration of under-characterized regions with exploitation of high-mean, low-variance predictions across correlated properties. Applied to refractory high-entropy alloys for high-temperature applications, our framework converges to optimal formulations in fewer iterations with cost-aware queries than conventional GP-based BO, highlighting the value of deep, uncertainty-aware, cost-sensitive strategies in materials campaigns.