Abstract:As the capabilities of large language model (LLM) agents continue to advance, their advanced social behaviors, such as cooperation, deception, and collusion, call for systematic evaluation. However, existing benchmarks often emphasize a single capability dimension or rely solely on behavioral outcomes, overlooking rich process information from agents' decision reasoning and communicative interactions. To address this gap, we propose M3-Bench, a multi-stage benchmark for mixed-motive games, together with a process-aware evaluation framework that conducts synergistic analysis across three modules: BTA (Behavioral Trajectory Analysis), RPA (Reasoning Process Analysis), and CCA (Communication Content Analysis). Furthermore, we integrate the Big Five personality model and Social Exchange Theory to aggregate multi-dimensional evidence into interpretable social behavior portraits, thereby characterizing agents' personality traits and capability profiles beyond simple task scores or outcome-based metrics. Experimental results show that M3-Bench can reliably distinguish diverse social behavior competencies across models, and it reveals that some models achieve seemingly reasonable behavioral outcomes while exhibiting pronounced inconsistencies in their reasoning and communication.